References
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued
fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Math. 2021,
9 (2), 148. doi:10.3390/math9020148
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction \(\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}
\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}
\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\) .
Ukrainian Math. J. 2020, 72 (7), 1018–1029.
doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Math. Zh. 2020,
72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in
Ukrainian))
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction whose partial denominators are equal to
unity. Mat. Stud. 2020, 54 (1), 3–14.
doi:10.30970/ms.54.1.3-14
- Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s
functions \(F_D\) ratio by Nörlund’s
branched continued fraction in the complex domain. Mat. Metody
Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
- Baran O.E. An analog of the Vorpitskii convergence criterion for
branched continued fractions of special form. J. Math. Sci. (N.Y.)
1998, 90 (5), 2348–2351. doi:10.1007/BF02433964
(translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39
(2), 35–38. (in Ukrainian))
- Baran O.E. Twin circular domains of convergence of branched
continued fractions with inequivalent variables. J. Math. Sci.
(N.Y.) 2011, 174 (2), 209–218.
doi:10.1007/s10958-011-0291-0 (translation of Mat. Metody Fiz.-Mekh.
Polya 2009, 52 (4), 73–80. (in Ukrainian))
- Baker G.A., Graves-Morris P. Padé approximants. Cambridge Univ.
Press, Cambridge, 1996.
doi:10.1017/CBO9780511530074
- Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986.
(in Russian)
- Bodnar D.I., Bilanyk I.B. Estimates of the rate of pointwise and
uniform convergence for branched continued fractions with nonequivalent
variables. Mat. Metody Fiz.-Mekh. Polya 2019, 62
(4), 72–82. (in Ukrainian)
- Bodnar D.I., Dmytryshyn R.I. Multidimensional associated
fractions with independent variables and multiple power series.
Ukrainian Math. J. 2019, 71 (3), 370–386.
doi:10.1007/s11253-019-01652-5 (translation of Ukrain. Mat. Zh. 2019,
71 (3), 325–339. (in Ukrainian))
- Bodnar D.I. Investigation of the convergence of one class of branched
continued fractions. In: Scorobogatko V.Ya. (Ed.) Continued fractions
and their applications. Inst. Math. AN USSR, Kyiv, 1976. (In
Russian)
- Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2020, 12 (2), 353–359.
doi:10.15330/cmp.12.2.353-359
- Cuyt A. A review of multivariate Padé approximation theory.
J. Comput. Appl. Math. 1985, 12–13,
221–232. doi:10.1016/0377-0427(85)90019-6
- Cuyt A., Verdonk B. A review of branched continued fraction
theory for the construction of multivariate rational approximants.
Appl. Numer. Math. 1988, 4 (2–4), 263–271.
doi:10.1016/0168-9274(83)90006-5
- Cuyt A., Petersen V.B., Verdonk B., Waadeland H., Jones W.B. Handbook
of continued fractions for special functions. Springer, Dordrecht,
2008.
- Dmytryshyn R.I. Associated branched continued fractions with two
independent variables. Ukrainian Math. J. 2015, 66
(9), 1312–1323. doi:10.1007/s11253-015-1011-6 (translation of Ukrain.
Mat. Zh. 2014, 66 (9), 1175–1184. (in Ukrainian))
- Dmytryshyn R.I. Convergence of multidimensional A- and
J-fractions with independent variables. Comput. Methods Funct.
Theory 2021. doi:10.1007/s40315-021-00377-6
- Dmytryshyn R.I. Convergence of some branched continued fractions
with independent variables. Mat. Stud. 2017, 47
(2), 150–159. doi:10.15330/ms.47.2.150-159
- Dmytryshyn R.I. Multidimensional regular C-fraction with
independent variables corresponding to formal multiple power
series. Proc. Roy. Soc. Edinburgh Sect. A 2020,
150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R.I. On some of convergence domains of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2019, 11 (1), 54–58.
doi:10.15330/cmp.11.1.54-58
- Dmytryshyn R.I. On the expansion of some functions in a
two-dimensional g-fraction with independent variables. J. Math.
Sci. 2012, 181 (3), 320–327.
doi:10.1007/s10958-012-0687-5 (translation of Mat. Metody Fiz.-Mekh.
Polya 2010, 53 (4), 56–69. (in Ukrainian))
- Dmytryshyn R.I. The multidimensional generalization of
g-fractions and their application. J. Comp. and Appl. Math. 2004,
164–165, 265–284.
doi:10.1016/S0377-0427(03)00642-3
- Dmytryshyn R.I. The two-dimensional g-fraction with independent
variables for double power series. J. Approx. Theory 2012,
164 (12), 1520–1539. doi:10.1016/j.jat.2012.09.002
- Dmytryshyn R.I. Two-dimensional generalization of the Rutishauser
qd-algorithm. J. Math. Sci. 2015, 208 (3),
301–309. doi:10.1007/s11253-015-1011-6 (translation of Mat. Metody
Fiz.-Mekh. Polya 2014, 56 (4), 6–11. (in
Ukrainian))
- Holub A.P., Pozharskiy O.A., Chernetska L.O. Generalized moment
representations and multivariate multipoint Padé approximants.
Ukrainian Math. J. 2020, 71 (10), 1522–1540.
doi:10.1007/s11253-020-01729-6 (translation of Ukrain. Mat. Zh. 2019,
71 (10), 1331–1346. (in Ukrainian))
- Hoyenko N., Antonova T., Rakintsev S. Approximation for ratios of
Lauricella–Saran fuctions \(F_S\) with
real parameters by a branched continued fractions. Math. Bul.
Shevchenko Sci. Soc. 2011, 8, 28–42. (in Ukrainian)
- Lascu D., Sebe G.I. A Gauss–Kuzmin–Lévy theorem for Rényi-type
continued fractions. Acta Arith. 2020, 193 (3),
283–292.
- Lascu D., Sebe G.I. A Lochs-type approach via entropy in
comparing the efficiency of different continued fraction
algorithms. Math. 2021, 9 (3), 255.
doi:10.3390/math9030255
- Murphy J.A., O’Donohoe M.R. A two-variable generalization of the
Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978,
4 (3), 181–190. doi:10.1016/0771-050x(78)90002-5
- Komatsu T. Branched continued fractions associated with Hosoya
index of the tree graph. MATCH Commun. Math. Comput. Chem. 2020,
84 (2), 399–428.
- Komatsu T. Continued fraction expansions of the generating
functions of Bernoulli and related numbers. Indag. Math. 2020,
31 (4), 695–713. doi:10.1016/j.indag.2020.06.006
- Kuchminska K.Y., Vozna S.M. Development of an N-multiple power
series into an N-dimensional regular C-fraction. J. Math. Sci.
2020, 246 (2), 201–208. doi:10.1007/s10958-020-04730-3
(translation of Mat. Metody Fiz.-Mekh. Polya 2017,
60 (3), 70–75. (in Ukrainian))
- Kuchminskaya K., Siemaszko W. Rational approximation and
interpolation of functions by branched continued fractions. In: Gilewicz
J., Pindor M., Siemaszko W. (Eds.) Rational approximation and its
applications in mathematics and physics. Lecture Notes in Mathematics,
1237. Springer, Berlin, Heidelberg, 1987.
- Pétréolle M., Sokal A.D., Zhu B.-X. Lattice paths and branched
continued fractions: An infinite sequence of generalizations of the
Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise
Hankel-total positivity. arXiv 2020, arXiv:1807.03271v2.
- Jones W.B., Thron W.J. Continued fractions: analytic theory and
applications. Addison-Wesley Pub. Co., Reading, MA, 1980.
- Sebe G.I., Lascu D. Convergence rate for Rényi-type continued
fraction expansions. Period. Math. Hung. 2020, 81
(2), 239–249. doi:10.1007/s10998-020-00325-2
- Shabat B.V. Introduce in the complex analysis. Nauka, Moscow, 1969.
(in Russian)
- Siemaszko W. Branched continued fractions for double power
series. J. Comput. Appl. Math. 1980, 6 (2),
121–125. doi:10.1016/0771-050x(80)90005-4
- Scorobogatko V.Ya. Theory of branched continued fractions and its
applications in computational mathematics. Nauka, Moscow, 1983. (in
Russian)