References

  1. Barros A., Ribeiro Jr.E. Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 2012, 140 (3), 1033–1040. doi:10.1090/S0002-9939-2011-11029-3
  2. Barros A., Batista R., Ribeiro Jr.E. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math. 2014, 174 (1), 29–39. doi:10.1007/s00605-013-0581-3
  3. Basu N., Bhattacharyya A. Conformal Ricci soliton in Kenmotsu manifold. Glob. J. Adv. Res. Class. Mod. Geom. 2015, 4 (1), 15–21.
  4. Cho J.T., Kimura M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. (2) 2009, 61 (2), 205–212. doi:10.2748/tmj/1245849443
  5. Călin C., Crasmareanu M. \(\eta\)-Ricci solitons on Hopf hypersurfaces in complex space forms. Rev. Roumaine Math. Pures Appl. 2012, 57 (1), 55–63.
  6. Dey S., Roy S. \(*\)-\(\eta\)-Ricci Soliton within the framework of Sasakian manifold. J. Dyn. Syst. Geom. Theor. 2020, 18 (2), 163–181. doi:10.1080/1726037X.2020.1856339
  7. Dey S., Sarkar S., Bhattacharyya A. \(*\)-\(\eta\) Ricci soliton and contact geometry. Ric. Mat. 2021. doi:10.1007/s11587-021-00667-0
  8. Dey S., Uddin S. Conformal \(\eta\)-Ricci almost solitons on Kenmotsu manifolds. Int. J. Geom. Methods Mod. Phys. 2022, 19 (08), 2250121. doi:10.1142/S0219887822501213
  9. Dey S., Roy S. Characterization of general relativistic spacetime equipped with \(\eta\)-Ricci-Bourguignon soliton. J. Geom. Phys. 2022, 178 (2), 104578. doi:10.1016/j.geomphys.2022.104578
  10. Dey S., Azami S. Certain results on \(\eta\)-Ricci solitons and almost \(\eta\)-Ricci solitons. Facta Univ. Ser. Math. Inform. 2022, 37 (2), 359–376. doi:10.22190/FUMI220210025D.
  11. Fischer A.E. An introduction to conformal Ricci flow. Classical Quantum Gravity 2004, 21, 171–218. doi:10.1088/0264-9381/21/3/011
  12. Ganguly D., Dey S., Ali A., Bhattacharyya A. Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form. J. Geom. Phys. 2021, 169, 104–339. doi:10.1016/j.geomphys.2021.104339
  13. Ganguly D., Dey S., Bhattacharyya A. On trans-Sasakian 3-manifolds as \(\eta\)-Einstein solitons. Carpathian Math. Publ. 2021, 13 (2), 460–474. doi:10.15330/cmp.13.2.460-474
  14. Ghosh A. Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold. Carpathian Math. Publ. 2019, 11 (1), 59–69. doi:10.15330/cmp.11.1.59-69
  15. Ghosh A. Kenmotsu \(3\)-metric as a Ricci soliton. Chaos Solitons Fractals 2011, 44 (8), 647–650. doi:10.1016/j.chaos.2011.05.015
  16. Ghosh A. An \(\eta\)-Einstein Kenmotsu metric as a Ricci soliton. Publ. Math. Debrecen 2013, 82 (3–4), 591–598. doi:10.5486/PMD.2013.5344
  17. Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. doi:10.1090/conm/071/954419
  18. Hui S.K., Yadav S.K., Patra A. Almost conformal Ricci solitons on f-Kenmotsu manifolds. Khayyam J. Math. 2019, 5 (1), 89–104. doi:10.22034/kjm.2019.81221
  19. Yanlin Li., Ganguly D., Dey S., Bhattacharyya A. Conformal \(\eta\)-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7 (4), 5408–5430. doi:10.3934/math.2022300
  20. Yanlin Li., Dey S., Pahan S., Ali A. Geometry of conformal \(\eta\)-Ricci solitons and conformal \(\eta\)-Ricci almost solitons on paracontact geometry. Open Math. 2022, 20 (1). doi:10.1515/math-2022-0048
  21. Nagaraja H.G., Venu K. \(f\)-Kenmotsu metric as conformal Ricci soliton. An. Univ. Vest. Timis. Ser. Mat.-Inform. 2017, 55 (1), 119–127. doi:10.1515/awutm-2017-0009
  22. Pigola S., Rigoli M., Rimoldi M., Setti A. Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2011, 10 (4), 757–799. doi:10.2422/2036-2145.2011.4.01
  23. Roy S., Dey S., Bhattacharyya A., Hui S.K. \(\ast\)-conformal \(\eta\)-Ricci soliton on Sasakian Manifold. Asian-Eur. J. Math. 2022, 15 (02), 250–358. doi:10.1142/S1793557122500358
  24. Roy S., Dey S., Bhattacharyya A. Conformal Einstein soliton within the framework of para-Kähler manifold. Differ. Geom. Dyn. Syst. 2021, 23, 235–243. doi:10.48550/arXiv.2005.05616
  25. Sarkar S., Dey S., Chen X. Certain results of conformal and \(*\)-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds. Filomat 2021, 35 (15), 5001–5015. doi:10.2298/FIL2115001S
  26. Sarkar S., Dey S., Alkhaldi A.H., Bhattacharyya A. Geometry of para-Sasakian metric as an almost conformal \(\eta\)-Ricci soliton. J. Geom. Phys. 2021, 181. doi:10.1016/j.geomphys.2022.104651
  27. Siddiqi M.D. Almost Conformal Ricci solitons in \((\kappa, \mu)\)-Paracontact metric manifolds. Palest. J. Math. 2020, 9 (2), 832–840.
  28. Sharma R. Certain results on \(K\)-contact and \((\kappa, \mu)\)-contact manifolds. J. Geom. 2008, 89, 138–147. doi:10.1007/s00022-008-2004-5
  29. Venkatesha V., Naik D.M., Kumara H.A. \(\ast\)-Ricci solitons and gradient almost \(\ast\)-Ricci solitons on Kenmotsu manifolds. Math. Slovaca 2019, 69 (6), 1447–1458. doi:10.1515/ms-2017-0321
  30. Wang W. Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds. J. Korean Math. Soc. 2016, 53 (5), 1101–1114. doi:10.4134/JKMS.j150416
  31. Yano K. Integral formulas in Riemannian geometry. Marcel Dekker, New York, 1970.
  32. Yano K., Kon M. Structures on Manifolds. In: Pure Mathematics \(3\), World Scientific Pub. Co., Singapore, 1984.
  33. Zamkovoy S. Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 2009, 36 (1), 37–60. doi:10.1007/s10455-008-9147-3