References

  1. Agarwal P., Ibrahim I.H., Yousry F.M. G-stability one-leg hybrid methods for solving DAEs. Adv. Difference Equ. 2019, 103 (2019), 1–15. doi:10.1186/s13662-019-2019-2
  2. Agarwal P., Ibrahim I.H. A new type OF hybrid multistep multiderivative formula for solving stiff IVPs. Adv. Difference Equ. 2019, 286 (2019), 1–14. doi:10.1186/s13662-019-2215-0
  3. Arfan M., Shah K., Ullah A., Abdeljawad T. Study of fuzzy fractional order diffusion problem under the Mittag-Leffler Kernel Law. Physica Scripta 2021, 96 (7), 074002. doi:10.1088/1402-4896/abf582
  4. Arfan M., Shah K., Abdeljawad T., Hammouch Z. An efficient tool for solving two-dimensional fuzzy fractional-ordered heat equation. Numer. Methods Partial Differential Equations 2021, 37 (2), 1407–1418. doi:10.1002/num.22587
  5. Bede B., Gal S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems 2005, 151 (3), 581–599. doi:10.1016/j.fss.2004.08.001
  6. Harir A., Melliani S., Chadli L.S. Fuzzy fractional evolution equations and fuzzy solution operators. Adv. Fuzzy Syst. 2019, 2019 (2), 1–10. doi:10.1155/2019/5734190
  7. Harir A., Melliani S., Chadli L.S. Hybrid Fuzzy Differential Equations. AIMS Mathematics 2020, 5 (1), 273–285. doi:10.3934/math.2020018
  8. Harir A., Melliani S., Chadli L.S. Fuzzy generalized conformable fractional derivative. Adv. Fuzzy Syst. 2020, 2020, 1–7. doi:10.1155/2020/1954975
  9. Chadli L.S., Harir A., Melliani S. Solutions of fuzzy wave-like equations by variational iteration method. Ann. Fuzzy Math. Inform. 2014, 8 (4), 527–547.
  10. Harir A., Melliani S., Chadli L.S. An algorithm for the solution of fuzzy fractional differential equation. Journal of Universal Mathematics 2020, 3 (1), 11–20. doi:10.33773/jum.635100
  11. Diethelm K., Ford N.J. The Analysis of Fractional Differential Equations. J. Math. Anal. Appl. 2002, 265, 229–248.
  12. Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154, 621–640.
  13. Dhage B.C. A fixed point theorem in Banach algebras with applications to functional integral equations. Kyungpook Math. J. 2004, 44, 145–155.
  14. Diamond P., Kloeden P.E. Metric Spaces of Fuzzy Sets : Theory and Applications. World Scienific, Singapore, 1994. doi:10.1142/2326
  15. Dubois D., Prade H. Towards fuzzy differential calculus -Part 1, integration of fuzzy mappings. Fuzzy Sets and Systems 1982, 8 (1), 1–17.
  16. Lakshmikantham V., Mohapatra R.N. Theory of Fuzzy Differential Equations and Inclusions. London: CRC Press, 2003. doi:10.1201/9780203011386
  17. Ma M., Friedman M., Kandel A. A new fuzzy arithmetic. Fuzzy Sets and Systems 1999, 108 (1), 83–90. doi10.1016/S0165-0114(97)00310-2
  18. Seikkala S. On the fuzzy initial value problem. Fuzzy Sets and Systems 1987, 24, 319–330. doi:10.1016/0165-0114(87)90030-3
  19. Shah K., Seadawy Aly R., Arfan M. Evaluation of one dimensional fuzzy fractional partial differential equations. Alexandria Engineering Journal 2020, 59 (5), 3347–3353. doi:10.1016/j.aej.2020.05.003
  20. Stefanini L. Ageneralization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems 2010, 161 (11), 1564–1584. doi:10.1016/j.fss.2009.06.009
  21. Ullah A., Ullah Z., Abdeljawad T., Hammouch Z., Shah K. A hybrid method for solving fuzzy Volterra integral equations of separable type kernels. J. King Saud Univ.-Sci. 2021, 33 (1), 101246. doi:10.1016/j.jksus.2020.101246
  22. Ur Rahman M., Arfan M., Shah K., Gomez-Aguilar J. F. Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fractals 2020, 140, 110232. doi:10.1016/j.chaos.2020.110232