References

  1. Althoff M., Krogh B.H. Reachability analysis of nonlinear differential-algebraic systems. IEEE Trans. Automat. Control 2014, 59 (2), 371–383. doi:10.1109/TAC.2013.2285751
  2. Butuzov V.F. Asymptotics of the solution of a system of singularly perturbed equations in the case of a multiple root of the degenerate equation. Differ. Equ. 2014, 50 (2), 177–188. doi:10.1134/S0012266114020050 (translation of Differ. Uravn. 2014, 50 (2), 175–186. (in Russian))
  3. Chang K.W., Howes F.A. Nonlinear singular perturbation problems: theory and applications. Springer-Verlag, New York, 1984.
  4. Chang K.W. Singular perturbations of a boundary problem for a vector second order differential equation. SIAM J. Appl. Math. 1976, 30 (1), 42–54. doi:10.1137/0130005
  5. Dick A., Koch O., März R., Weinmüller E. Convergence of collocation schemes for boundary value problems in nonlinear index 1 DAEs with a singular point. Math. Comp. 2013, 82 (282), 893–918.
  6. O’Donnell M.A. Boundary and corner layer behavior in singularly perturbed semilinear systems of boundary value problems. SIAM J. Math. Anal. 1984, 15 (2), 317–332. doi:10.1137/0515025
  7. Fedorjuk M.V. Asymptotic Methods for Linear Ordinary Differential Equations. Nauka, Moscow, 1983. (in Russian)
  8. Gantmacher F.R. The Theory of Matrices. Chelsea Publishing Company, New York, 1960.
  9. Goursat E. A course in Mathematical Analysis. Ginn and Company, Boston, 1904.
  10. Howes F.A. Singularly perturbed semilinear systems. Stud. Appl. Math. 1979, 61 (3), 185–209. doi:10.1002/sapm1979613185
  11. Kantorovich L.V., Akilov G.P. Functional Analysis. Pergamon Press, Oxford, 1982.
  12. Karandzhulov L. Boundary-value problem for ordinary differential equations with double singularity in a critical case. AIP Conf. Proc. 2021, 2333 (1), 040007. doi:10.1063/5.0042436
  13. Kelley W.G. A nonlinear singular perturbation problem for second order systems. SIAM J. Math. Anal. 1979, 10 (1), 32–37. doi:10.1137/0510003
  14. Kuehn C. Multiple Time Scale Dynamics. Springer, Berlin, 2015.
  15. Lamour R., März R., Weinmüller E. Boundary-value problems for differential-algebraic equations: a survey. In: Ilchmann A., Reis T. (Eds.) Surveys in Differential-Algebraic Equations III. Springer, Cham, 2015. 177–309.
  16. O’Malley R.E. A boundary value problem for certain nonlinear second order differential equations with a small parameter. Arch. Ration. Mech. Anal. 1968, 29 (1), 66–74. doi:10.1007/BF00256459
  17. Mises R. v. Die Grenzschichte in der Theorie der gewöhnlichen Differentialgleichungen. Acta Sci. Math. (Szeged) 1950, 12, 29–34.
  18. Nagumo M. Über die Differentialgleichung \(y''=f(x,y,y')\). Proc. Phys. Math. Soc. Jpn. 3rd Series 1937, 19, 861–866. doi:10.11429/ppmsj1919.19.0_861
  19. Oleinik O.A., Zhizhina A.I. On a boundary problem for the equation \(\varepsilon y''=F(x,y,y')\) for small \(\varepsilon\). Math. Sb. 1952, 31 (73) (3), 709–717. (in Russian)
  20. Pade J., Tischendorf C. Waveform relaxation: a convergence criterion for differential-algebraic equations. Numer. Algorithms 2019, 81 (4), 1327–1342.
  21. Samusenko P.F. Asymptotic Integration of Singular Perturbed Systems of Differential-Functional Equations with Degenerations. NPDU, Kyiv, 2011. (in Ukrainian)
  22. Searl J.W. Expansions for singular perturbations. IMA J. Appl. Math. 1971, 8 (2), 131–138. doi:10.1093/imamat/8.2.131
  23. Sibuya Y. Simplification of a system of linear ordinary differential equations about a singular point. Funkcial. Ekvac. 1962, 4, 29–56.
  24. Vasil’eva A.B., Butuzov V.F. Asymptotic expansions of solutions of singularly perturbed equations. Nauka, Moscow, 1973. (in Russian)
  25. Vasil’eva A.B. Two-point boundary value problem for a singularly perturbed equation with a reduced equation having multiple roots. Comput. Math. Math. Phys. 2009, 49 (6), 1021–1032. doi:10.1134/S0965542509060104 (translation of Zh. Vychisl. Mat. Mat. Fiz. 2009, 49 (6), 1067–1079. (in Russian))
  26. Wasow W. Singular perturbations of boundary-value problems for nonlinear differential equations of the second order. Comm. Pure Appl. Math. 1956, 9 (1), 93–113. doi:10.1002/cpa.3160090107