References
- Althoff M., Krogh B.H. Reachability analysis of nonlinear
differential-algebraic systems. IEEE Trans. Automat. Control 2014,
59 (2), 371–383. doi:10.1109/TAC.2013.2285751
- Butuzov V.F. Asymptotics of the solution of a system of
singularly perturbed equations in the case of a multiple root of the
degenerate equation. Differ. Equ. 2014, 50 (2),
177–188. doi:10.1134/S0012266114020050 (translation of Differ. Uravn.
2014, 50 (2), 175–186. (in Russian))
- Chang K.W., Howes F.A. Nonlinear singular perturbation problems:
theory and applications. Springer-Verlag, New York, 1984.
- Chang K.W. Singular perturbations of a boundary problem for a
vector second order differential equation. SIAM J. Appl. Math.
1976, 30 (1), 42–54. doi:10.1137/0130005
- Dick A., Koch O., März R., Weinmüller E. Convergence of
collocation schemes for boundary value problems in nonlinear index 1
DAEs with a singular point. Math. Comp. 2013, 82
(282), 893–918.
- O’Donnell M.A. Boundary and corner layer behavior in singularly
perturbed semilinear systems of boundary value problems. SIAM J. Math.
Anal. 1984, 15 (2), 317–332. doi:10.1137/0515025
- Fedorjuk M.V. Asymptotic Methods for Linear Ordinary Differential
Equations. Nauka, Moscow, 1983. (in Russian)
- Gantmacher F.R. The Theory of Matrices. Chelsea Publishing Company,
New York, 1960.
- Goursat E. A course in Mathematical Analysis. Ginn and Company,
Boston, 1904.
- Howes F.A. Singularly perturbed semilinear systems. Stud.
Appl. Math. 1979, 61 (3), 185–209.
doi:10.1002/sapm1979613185
- Kantorovich L.V., Akilov G.P. Functional Analysis. Pergamon Press,
Oxford, 1982.
- Karandzhulov L. Boundary-value problem for ordinary differential
equations with double singularity in a critical case. AIP Conf.
Proc. 2021, 2333 (1), 040007. doi:10.1063/5.0042436
- Kelley W.G. A nonlinear singular perturbation problem for second
order systems. SIAM J. Math. Anal. 1979, 10 (1),
32–37. doi:10.1137/0510003
- Kuehn C. Multiple Time Scale Dynamics. Springer, Berlin, 2015.
- Lamour R., März R., Weinmüller E. Boundary-value problems for
differential-algebraic equations: a survey. In: Ilchmann A., Reis T.
(Eds.) Surveys in Differential-Algebraic Equations III. Springer, Cham,
2015. 177–309.
- O’Malley R.E. A boundary value problem for certain nonlinear
second order differential equations with a small parameter. Arch.
Ration. Mech. Anal. 1968, 29 (1), 66–74.
doi:10.1007/BF00256459
- Mises R. v. Die Grenzschichte in der Theorie der gewöhnlichen
Differentialgleichungen. Acta Sci. Math. (Szeged) 1950,
12, 29–34.
- Nagumo M. Über die Differentialgleichung \(y''=f(x,y,y')\). Proc.
Phys. Math. Soc. Jpn. 3rd Series 1937, 19, 861–866.
doi:10.11429/ppmsj1919.19.0_861
- Oleinik O.A., Zhizhina A.I. On a boundary problem for the
equation \(\varepsilon
y''=F(x,y,y')\) for small \(\varepsilon\). Math. Sb. 1952,
31 (73) (3), 709–717. (in Russian)
- Pade J., Tischendorf C. Waveform relaxation: a convergence
criterion for differential-algebraic equations. Numer. Algorithms
2019, 81 (4), 1327–1342.
- Samusenko P.F. Asymptotic Integration of Singular Perturbed Systems
of Differential-Functional Equations with Degenerations. NPDU, Kyiv,
2011. (in Ukrainian)
- Searl J.W. Expansions for singular perturbations. IMA J.
Appl. Math. 1971, 8 (2), 131–138.
doi:10.1093/imamat/8.2.131
- Sibuya Y. Simplification of a system of linear ordinary
differential equations about a singular point. Funkcial. Ekvac.
1962, 4, 29–56.
- Vasileva A.B., Butuzov V.F. Asymptotic expansions of solutions of
singularly perturbed equations. Nauka, Moscow, 1973. (in Russian)
- Vasileva A.B. Two-point boundary value problem for a singularly
perturbed equation with a reduced equation having multiple roots.
Comput. Math. Math. Phys. 2009, 49 (6), 1021–1032.
doi:10.1134/S0965542509060104 (translation of Zh. Vychisl. Mat. Mat.
Fiz. 2009, 49 (6), 1067–1079. (in Russian))
- Wasow W. Singular perturbations of boundary-value problems for
nonlinear differential equations of the second order. Comm. Pure
Appl. Math. 1956, 9 (1), 93–113.
doi:10.1002/cpa.3160090107