References
- Ali F.A.M., Karim S.A.A., Saaban A., Hasan M.K., Ghaffar A., Nisar
K.S., Baleanu D. Construction of cubic timmer triangular patches and
its application in scattered data interpolation. Mathematics 2020,
8 (2), 1–46. doi:10.3390/math8020159
- Ashraf P., Nawaz B., Baleanu D., Nisar K.S., Ghaffar A., Khan M.A.A.,
Akram S. Analysis of geometric properties of ternary four-point
rational interpolating subdivision scheme. Mathematics 2020,
8 (3), 1–19. doi:10.3390/math8030338
- Acar T., Agrawal P.N., Kumar A.S. On a Modification of \((p,q)\)-Szász-Mirakyan Operators.
Complex Anal. Oper. Theory 2018, 12 (1), 155–167.
doi:10.1007/s11785-016-0613-9
- Ilarslan H.G.I., Acar T. Approximation by bivariate \((p,q)\)-Baskakov-Kantorovich
operators. Georgian Math. J. 2016, 25 (3),
397–407. doi:10.1515/gmj-2016-0057
- Acar T., Aral A., Mohiuddine S.A. Approximation by Bivariate
\((p,q)\)-Bernstein-Kantorovich
Operators. Iran. J. Sci. Technol. Trans. A Sci. 2016,
42, 655–662. doi:10.1007/s40995-016-0045-4
- Sharma H., Maurya R., Gupta C. Approximation Properties of
Kantorovich Type Modifications of \((p,q)\)-Meyer-König-Zeller Operators.
Constr. Math. Anal. 2018, 1 (1), 58–72.
doi:10.33205/cma.436071
- Mursaleen M., Nasiruzzaman M. Approximation of Modified
Jakimovski-Leviatan-Beta Type Operators. Constr. Math. Anal. 2018,
1 (2), 88–98. doi:10.33205/cma.453284
- Acar T. \((p,q)\)-Generalization
of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016,
39 (10), 2685–2695. doi:10.1002/mma.3721
- Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of
\((p, q)\)-Baskakov operators. J.
Inequal. Appl. 2016, 2016 (98), 1–14.
doi:10.1186/s13660-016-1045-9
- Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of
\((p, q)\)-Bernstein operators.
Iran. J. Sci. Technol. Trans. A Sci. 2017, 42 (3),
1459–1464. doi:10.1007/s40995-017-0154-8
- Acar T., Aral A., Mursaleen M. Approximation by
Baskakov-Durrmeyer operators based on \((p,
q)\)-integers. Math. Slovaca 2018, 68 (4),
897–906. doi:10.1515/ms-2017-0153
- Acar T., Mohiuddine S.A., Mursaleen M. Approximation by \((p, q)\)-Baskakov-Durrmeyer-Stancu
operators. Complex Anal. Oper. Theory 2018, 12
(6), 1453–1468. doi:10.1007/s11785-016-0633-5
- Bartle R.G., Sherbert D.R. Introduction to Real Analysis. John Wiley
and Sons, Inc., University of Illinois, Urbana-Champaign, 2010.
- Bernstein S.N. Démonstration du théorème de Weierstrass fondée
sur le calcul des probabilités. Comm. Kharkov Math. Soc. 1912,
13, 1–2.
- Bèzier P.E. Numerical Control-Mathematics and applications. John
Wiley and Sons, London, 1972.
- Cai Q.B., Xu X.W. A basic problem of \((p,q)\)-Bernstein-type operators. J.
Inequal. Appl. 2017, 140 (2017), 1–7.
doi:10.1186/s13660-017-1413-0
- Cai Q.B., Cheng W.T. Convergence of \(\lambda\)-Bernstein operators based on
\((p, q)\)-integers. J. Inequal.
Appl. 2020, 35 (2020), 1–17.
doi:10.1186/s13660-020-2309-y
- Goldman R. Pyramid Algorithms: A Dynamic Programming Approach to
Curves and Surfaces for Geometric Modeling. The Morgan Kaufmann Series
in Computer Graphics and Geometric Modeling. Elsevier Science, 2003.
- Farouki R.T., Rajan V.T. Algorithms for polynomials in Bernstein
form. Comput. Aided Geom. Design 1988, 5 (1),
1–26. doi:10.1016/0167-8396(88)90016-7
- Han L., Chu Y., Qiu Z. Generalized Bèzier curves and surfaces
based on Lupaş \(q\)-analogue of
Bernstein operator. J. Comput. Appl. Math. 2014,
261, 352–363. doi:10.1016/j.cam.2013.11.016
- Kadak U. On weighted statistical convergence based on \((p,q)\)-integers and related approximation
theorems for functions of two variables. J. Math. Anal. Appl. 2016,
443 (2), 752–764. doi:10.1016/J.JMAA.2016.05.062
- Kadak U., Mishra V.N., Pandey S. Chlodowsky type generalization
of \((p,q)\)-Szász operators involving
Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fı́s. Nat.
Ser. A Math. RACSAM 2018, 112 (4), 1443–1462.
- Kadak U., Mohiuddine S.A. Generalized statistically almost
convergence based on the difference operator, which includes the \((p,q)\)-Gamma function and related
approximation theorems. Results Math. 2018, 73,
article no. 9. doi:10.1007/s00025-018-0789-6
- Kadak U. Weighted statistical convergence based on generalized
difference operator involving \((p,q)\)-Gamma function and its applications
to approximation theorems. J. Math. Anal. Appl. 2017,
448 (2), 1633–1650. doi:10.1016/J.JMAA.2016.11.084
- Khan Kh., Lobiyal D.K., Kilicman A. A de Casteljau Algorithm for
Bernstein type Polynomials based on \((p,q)\)-integers. Appl. Appl. Math.
2018, 13 (2), 997–1017.
- Khan Kh., Lobiyal D.K., Kilicman A. Bézier curves and surfaces
based on modified Bernstein polynomials. Azerb. J. Math. 2019,
9 (1), 3–21.
- Khan Kh. Generalized Bézier curves and their applications in computer
aided geometric design. Ph.D. Thesis, SC & SS, JNU New Delhi,
2019.
- Khan Kh., Lobiyal D.K. Bézier curves based on Lupaş \((p,q)\)-analogue of Bernstein function in
CAGD. Jour. Comput. Appl. Math. 2017, 317,
458–477.
- Karim S.A.A., Saaban A., Skala V., Ghaffar A., Nisar K.S., Baleanu D.
Construction of new cubic Bézier-like triangular patches with
application in scattered data interpolation. Adv. Differ. Equ.
2020, 151 (2020). doi:10.1186/s13662-020-02598-w
- Lupaş A. A \(q\)-analogue of the
Bernstein operator. Semin. Numer. Stat. Calculus 1987,
9, 85–92.
- Korovkin P.P. Linear operators and approximation theory. Hindustan
Publishing Corporation, Delhi, 1960.
- Lewanowicz S., Woźny P. Generalized Bernstein polynomials.
BIT 2004, 44 (1), 63–78.
doi:10.1023/B:BITN.0000025086.89121.d8
- Mishra V.N., Patel P.On generalized integral Bernstein operators
based on \(q\)-integers. Appl.
Math. Comput. 2014, 242 (1), 931–944.
doi:10.1016/j.amc.2014.05.134
- Mohiuddine S.A., Alotaibi A., Acar T. Durrmeyer type \((p,q)\)-Baskakov operators preserving
linear functions. J. Math. Inequal. 2018, 12 (4),
961–73. doi:10.7153/jmi-2018-12-73
- Mursaleen M., Ansari K.J., Khan A. On \((p,q)\)-analogue of Bernstein
Operators. Appl. Math. Comput. 2015, 266,
874–882.
- Mursaleen M., Ansari K.J., Khan A. Some approximation results by
(p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput.
2015, 264, 392–402.
- Mursaleen M., Nasiruzzaman Md., Nurgali A. Some approximation
results on Bernstein-Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl.
2015, 249. doi:10.1186/s13660-015-0767-4
- Mursaleen M., Nasiruzzaman Md., Ansari K. J., Alotaibi A.
Generalized \((p,q)\)-Bleimann-Butzer-Hahn operators and
some approximation results. J. Inequal. Appl. 2017,
310. doi:10.1186/s13660-017-1582-x
- Mursaleen M., Nasiruzzaman Md., Khan A., Ansari K.J. Some
approximation results on Bleimann-Butzer-Hahn operators defined by \((p,q)\)-integers. Filomat 2016,
30 (3), 639–648.
- Ostrovska S. On the Lupaş \(q\)-analogue of the Bernstein
operator. Rocky Mountain J. Math. 2006, 36 (5),
1615–1629. doi:10.1216/rmjm/1181069386
- Phillips G.M. A generalization of the Bernstein polynomials based
on the \(q\)-integers. ANZIAM J.
2000, 42 (1), 79–86. doi:10.1017/S1446181100011615
- Phillips G.M. Bernstein polynomials based on the \(q\)-integers. Annals Numer. Math.
1997, 4, 511–518.
- Phillips G.M. Interpolation and Approximation by Polynomials.
Springer, New York, 2003.
- Rababah A., Manna S. Iterative process for G2-multi degree
reduction of Bézier curves. Appl. Math. Comput. 2011,
217 (20), 8126–8133. doi:10.1016/j.amc.2011.03.016
- Simeonova P., Zafirisa V., Goldman R. \(q\)-Blossoming: A new approach to
algorithms and identities for \(q\)-Bernstein bases and \(q\)-Bézier curves. J. Approx. Theory
2012, 164 (1), 77–104.
doi:10.1016/j.jat.2011.09.006
- Rao N., Wafi A. \((p,q)\)-Bivariate-Bernstein-Chlodowsky
operators. Filomat 2018, 32 (2), 369–378.
doi:10.2298/FIL1802369R
- Rao N., Wafi A. Bivariate-Schurer-Stancu operators based on \((p,q)\)-integers. Filomat 2018,
32 (4), 1251–1258. doi:10.2298/FIL1804251R
- Zulkifli N.A.B., Karim S.A.A., Shafie A.B., Sarfraz M., Ghaffar A.,
Nisar K.S. Image interpolation using a rational bi-cubic Ball.
Mathematics 2019, 7 (11), 1045.
doi:10.3390/math7111045