References

  1. Abu-Donia H.M. Common fixed point theorems for fuzzy mappings in metric space under \(\varphi\)-contraction condition. Chaos Solitons Fractals 2007, 34 (2), 538–543. doi:10.1016/j.chaos.2005.03.055
  2. Azam A., Fisher B., Khan M. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 2011, 32 (3), 243–253.
  3. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intéxgrales. Fund. Math. 1922, 3 (1), 133–181.
  4. Bellman R., Lee E.S. Functional equations arising in dynamic programming. Aequationes Math. 1978, 17, 1–18.
  5. Berinde V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–54.
  6. Berinde M., Berinde V. On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 2007, 326 (2), 772–782. doi:10.1016/j.jmaa.2006.03.016
  7. Borisut P., Kumam P., Gupta V., Mani N. Generalized \((\psi,\alpha,\beta)\)-weak contractions for initial value problems. Mathematics 2019, 7 (3), 266. doi:10.3390/math7030266
  8. Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251. doi:10.2307/1999724
  9. Chandra N., Joshi M.C., Singh N.K. Fixed point theorems for generalized multivalued contraction. J. Anal. 2018, 26 (1), 49–59. doi:10.1007/s41478-017-0067-0
  10. Ćirić Lj.B. Fixed points for generalized multi-valued contractions. Mat. Vesnik 1972, 9 (24), 265–272.
  11. Ćirić Lj.B. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 1974, 45 (2), 267–273. doi:10.2307/2040075
  12. orić D., Lazović R. Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications. Fixed Point Theory Appl. 2011, 2011 (1), 40. doi:10.1186/1687-1812-2011-40
  13. Frigon M., O’Regan D. Fuzzy contractive maps and fuzzy fixed points. Fuzzy Sets and Systems 2002, 129 (1), 39–45. doi:10.1016/S0165-0114(01)00171-3
  14. Gupta V., Kumar S.R., Kanwar A. Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and application to integral type contraction. Iran. J. Fuzzy Syst. 2017, 14 (5), 123–137. doi:10.22111/ijfs.2017.3436
  15. Heilpern S. Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 1981, 83 (2), 566–569. doi:10.1016/0022-247X(81)90141-4
  16. Kannan R. Some results on fixed points – II. Amer. Math. Monthly 1969, 76 (4), 405–408. doi:10.2307/2316437
  17. Mohammed S.S. On Bilateral fuzzy contractions. Funct. Anal. Approx. Comput. 2020, 12 (1), 1–13.
  18. Mohammed S.S., Azam A. Fixed points of soft-set valued and fuzzy set-valued maps with applications. J. Intell. Fuzzy Syst. 2019, 37 (3), 3865–3877.
  19. Nadler S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30 (2), 475–488.
  20. Rashid T., Beg I. Convex hesitant fuzzy sets. J. Intell. Fuzzy Syst. 2016, 30 (5), 2791–2796.
  21. Rodriguez R.M., Martinez L., Torra V., Xu Z.S., Herrera F. Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 2014, 29 (6), 495–524. doi:10.1002/int.21654
  22. Subrahmanyam P.V. Remarks on some fixed point theorems related to Banach’s contraction principle. J. Math. Phys. Sci. 1974, 8, 445–457.
  23. Suzuki T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer. Math. Soc. 2008, 136 (5), 1861–1869. doi:10.1090/S0002-9939-07-09055-7
  24. Torra V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25 (6), 529–539. doi:10.1002/int.20418
  25. Xia M., Xu Z. Hesitant fuzzy information aggregation in decision making. Internat. J. Approx. Reason. 2011, 52 (3), 395–407. doi:10.1016/j.ijar.2010.09.002
  26. Zadeh L.A. Fuzzy sets. Inf. Control 1965, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X
  27. Zhou L., Wu W.Z., Zhang W.X. Properties of the cut-sets of intuitionistic fuzzy relations. Fuzzy Syst. Math. 2009, 23 (2), 110–115.