References
- Abu-Donia H.M. Common fixed point theorems for fuzzy mappings in
metric space under \(\varphi\)-contraction condition. Chaos
Solitons Fractals 2007, 34 (2), 538–543.
doi:10.1016/j.chaos.2005.03.055
- Azam A., Fisher B., Khan M. Common fixed point theorems in
complex valued metric spaces. Numer. Funct. Anal. Optim. 2011,
32 (3), 243–253.
- Banach S. Sur les opérations dans les ensembles abstraits et leur
application aux équations intéxgrales. Fund. Math. 1922,
3 (1), 133–181.
- Bellman R., Lee E.S. Functional equations arising in dynamic
programming. Aequationes Math. 1978, 17, 1–18.
- Berinde V. Approximating fixed points of weak contractions using
the Picard iteration. Nonlinear Anal. Forum 2004,
9, 43–54.
- Berinde M., Berinde V. On a general class of multi-valued weakly
Picard mappings. J. Math. Anal. Appl. 2007, 326
(2), 772–782. doi:10.1016/j.jmaa.2006.03.016
- Borisut P., Kumam P., Gupta V., Mani N. Generalized \((\psi,\alpha,\beta)\)-weak contractions for
initial value problems. Mathematics 2019, 7 (3),
266. doi:10.3390/math7030266
- Caristi J. Fixed point theorems for mappings satisfying
inwardness conditions. Trans. Amer. Math. Soc. 1976,
215, 241–251. doi:10.2307/1999724
- Chandra N., Joshi M.C., Singh N.K. Fixed point theorems for
generalized multivalued contraction. J. Anal. 2018,
26 (1), 49–59. doi:10.1007/s41478-017-0067-0
- Ćirić Lj.B. Fixed points for generalized multi-valued
contractions. Mat. Vesnik 1972, 9 (24),
265–272.
- Ćirić Lj.B. A generalization of Banachs contraction
principle. Proc. Amer. Math. Soc. 1974, 45 (2),
267–273. doi:10.2307/2040075
- orić D., Lazović R. Some Suzuki-type fixed point theorems for
generalized multivalued mappings and applications. Fixed Point
Theory Appl. 2011, 2011 (1), 40.
doi:10.1186/1687-1812-2011-40
- Frigon M., O’Regan D. Fuzzy contractive maps and fuzzy fixed
points. Fuzzy Sets and Systems 2002, 129 (1),
39–45. doi:10.1016/S0165-0114(01)00171-3
- Gupta V., Kumar S.R., Kanwar A. Some coupled fixed point results
on modified intuitionistic fuzzy metric spaces and application to
integral type contraction. Iran. J. Fuzzy Syst. 2017,
14 (5), 123–137. doi:10.22111/ijfs.2017.3436
- Heilpern S. Fuzzy mappings and fixed point theorem. J. Math.
Anal. Appl. 1981, 83 (2), 566–569.
doi:10.1016/0022-247X(81)90141-4
- Kannan R. Some results on fixed points – II. Amer. Math.
Monthly 1969, 76 (4), 405–408. doi:10.2307/2316437
- Mohammed S.S. On Bilateral fuzzy contractions. Funct. Anal.
Approx. Comput. 2020, 12 (1), 1–13.
- Mohammed S.S., Azam A. Fixed points of soft-set valued and fuzzy
set-valued maps with applications. J. Intell. Fuzzy Syst. 2019,
37 (3), 3865–3877.
- Nadler S.B. Multi-valued contraction mappings. Pac. J. Math.
1969, 30 (2), 475–488.
- Rashid T., Beg I. Convex hesitant fuzzy sets. J. Intell.
Fuzzy Syst. 2016, 30 (5), 2791–2796.
- Rodriguez R.M., Martinez L., Torra V., Xu Z.S., Herrera F.
Hesitant fuzzy sets: state of the art and future directions.
Int. J. Intell. Syst. 2014, 29 (6), 495–524.
doi:10.1002/int.21654
- Subrahmanyam P.V. Remarks on some fixed point theorems related to
Banach’s contraction principle. J. Math. Phys. Sci. 1974,
8, 445–457.
- Suzuki T. A generalized Banach contraction principle that
characterizes metric completeness. Proc. Amer. Math. Soc. 2008,
136 (5), 1861–1869.
doi:10.1090/S0002-9939-07-09055-7
- Torra V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010,
25 (6), 529–539. doi:10.1002/int.20418
- Xia M., Xu Z. Hesitant fuzzy information aggregation in decision
making. Internat. J. Approx. Reason. 2011, 52 (3),
395–407. doi:10.1016/j.ijar.2010.09.002
- Zadeh L.A. Fuzzy sets. Inf. Control 1965, 8
(3), 338–353. doi:10.1016/S0019-9958(65)90241-X
- Zhou L., Wu W.Z., Zhang W.X. Properties of the cut-sets of
intuitionistic fuzzy relations. Fuzzy Syst. Math. 2009,
23 (2), 110–115.