References
- Aron R.M., Klimek M. Supremum norms for quadratic
polynomials. Arch. Math. (Basel) 2001, 76 (1),
73–80. doi:10.1007/s000130050544
- Cavalcante M., Pellegrino D., Teixeira E. Geometry of multilinear
forms. Commun. Contemp. Math. 2020, 22 (2),
article ID 1950011. doi:10.1142/S0219199719500111
- Choi Y.S., Kim S.G., Ki H. Extreme polynomials and multilinear
forms on \(l_1\). J. Math. Anal.
Appl. 1998, 228 (2), 467–482.
doi:10.1006/jmaa.1998.6161
- Choi Y.S., Kim S.G. The unit ball of \(\mathcal{P}(^2l_2^2)\). Arch. Math.
(Basel) 1998, 71 (6), 472–480.
doi:10.1007/s000130050292
- Choi Y.S., Kim S.G. Extreme polynomials on \(c_0\). Indian J. Pure Appl. Math.
1998, 29, 983–989.
- Choi Y.S., Kim S.G. Smooth points of the unit ball of the space
\(\mathcal{P}(^2l^2_1)\). Results
Math. 1999, 36 (1–2), 26–33. doi:10.1007/BF03322099
- Choi Y.S., Kim S.G. Exposed points of the unit balls of the
spaces \(\mathcal{P}(^2l_p^2)~(p=1,
2,\infty)\). Indian J. Pure Appl. Math. 2004,
35, 37–41.
- Dineen S. Complex Analysis on Infinite Dimensional Spaces.
Springer-Verlag, London, 1999.
- Gámez-Merino J., Muñoz-Fernández G., Sánchez V., Seoane-Sepúlveda J.
Inequalities for polynomials on the unit square via the Krein-Milman
Theorem. J. Convex Anal. 2013, 20 (1),
125–142.
- Grecu B.C. Geometry of three-homogeneous polynomials on real
Hilbert spaces. J. Math. Anal. Appl. 2000,
246 (1), 217–229.
doi:10.1006/jmaa.2000.6783
- Grecu B.C. Smooth 2-homogeneous polynomials on Hilbert
spaces. Arch. Math. (Basel) 2001, 76 (6), 445–454.
doi:10.1007/PL00000456
- Grecu B.C. Geometry of 2-homogeneous polynomials on \(l_p\) spaces, \(1<p<\infty\). J. Math.
Anal. Appl. 2002, 273 (2), 262–282.
doi:10.1016/S0022-247X(02)00217-2
- Grecu B.C. Extreme 2-homogeneous polynomials on Hilbert
spaces. Quaest. Math. 2002, 25 (4),
421–435. doi:10.2989/16073600209486027
- Grecu B.C. Geometry of homogeneous polynomials on two-
dimensional real Hilbert spaces. J. Math. Anal. Appl.
2004, 293 (2), 578–588.
doi:10.1016/j.jmaa.2004.01.020
- Grecu B.C., Muñoz-Fernández G., Seoane-Sepúlveda J. The unit ball
of the complex \(P(^3H)\).
Math. Z. 2009, 263, 775–785.
doi:10.1007/s00209-008-0438-y
- Kim S.G. Exposed 2-homogeneous polynomials on \(L_P^2\), \(1\leq
P\leq \infty\). Math. Proc. R. Ir. Acad. 2007,
107A (2), 123–129.
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2l_{\infty}^2)\). Extracta Math. 2009,
24 (1), 17–29.
- Kim S.G. The unit ball of \({\mathcal
P}(^2d_{*}(1, w)^2).\) Math. Proc. R. Ir. Acad.
2011, 111A (2), 77–92.
doi:10.3318/pria.2011.111.1.9
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2013,
53 (2), 295–306.
- Kim S.G. Smooth polynomials of \({\mathcal P}(^2d_*(1,
w)^2)\). Math. Proc. R. Ir. Acad. 2013,
113A (1), 45–58.
- Kim S.G. Extreme bilinear forms of \({\mathcal L}(^2d_*(1,
w)^2)\). Kyungpook Math. J. 2013,
53 (4), 625–638.
- Kim S.G. Exposed symmetric bilinear forms of \({\mathcal
L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2014,
54 (3), 341–347.
- Kim S.G. Polarization and unconditional constants of \({\mathcal P}(^2d_{*}(1, w)^2)\).
Commun. Korean Math. Soc. 2014, 29 (3),
421–428. doi:10.4134/ckms.2014.29.3.421
- Kim S.G. Exposed bilinear forms of \({\mathcal L}(^2d_*(1,
w)^2)\). Kyungpook Math. J. 2015,
55 (1), 119–126.
- Kim S.G. Exposed 2-homogeneous polynomials on the two-dimensional
real predual of Lorentz sequence space. Mediterr. J.
Math. 2016, 13 (5), 2827–2839.
doi:10.1007/s00009-015-0658-4
- Kim S.G. The unit ball of \({\mathcal
L}(^2 {\mathbb
R}^2_{h(w)})\). Bull. Korean Math. Soc. 2017,
54 (2), 417–428. doi:10.4134/bkms.b150851
- Kim S.G. Extremal problems for \({\mathcal
L}_s(^2\mathbb{R}_{h(w)}^2)\). Kyungpook Math.
J. 2017, 57 (2), 223–232.
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2l_{\infty}^3)\). Comment. Math. 2017,
57 (1), 1–7. doi:10.14708/cm.v57i1.1230
- Kim S.G. The geometry of \({\mathcal
L}_s(^3l_{\infty}^2)\). Commun. Korean Math.
Soc. 2017, 32 (4), 991–997.
doi:10.4134/ckms.c170016
- Kim S.G. Extreme \(2\)-homogeneous polynomials on the plane
with a hexagonal norm and applications to the polarization and
unconditional constants. Studia Sci. Math. Hungar.
2017, 54 (3), 362–393.
doi:10.1556/012.2017.54.3.1371
- Kim S.G. The geometry of \({\mathcal
L}(^3l_{\infty}^2)\) and optimal constants in the
Bohnenblust-Hille inequality for multilinear forms and polynomials.
Extracta Math. 2018, 33 (1), 51–66.
doi:10.17398/2605-5686.33.1.51
- Kim S.G. Extreme bilinear forms on \(\mathbb{R}^n\) with the supremum norm.
Period. Math. Hungar. 2018, 77 (2), 274–290.
doi:10.1007/s10998-018-0246-z
- Kim S.G. Exposed polynomials of \({\mathcal P}(^2
\mathbb{R}^2_{h(\frac{1}{2})})\). Extracta
Math. 2018, 33 (2), 127–143.
doi:10.17398/2605-5686.33.2.127
- Kim S.G. The unit ball of the space of bilinear forms on \(\mathbb{R}^3\) with the supremum norm.
Commun. Korean Math. Soc. 2019, 34 (2),
487–494. doi:10.4134/ckms.c180111
- Kim S.G. Smooth points of \({\mathcal
L}_s(^nl_{\infty}^2).\) Bull. Korean Math. Soc.
2020, 57 (2), 443–447. doi:10.4134/bkms.b190311
- Kim S.G. Extreme points of the space \({\mathcal L}(^2l_{\infty}).\) Commun.
Korean Math. Soc. 2020, 35 (3), 799–807. doi:10.4134/CKMS.c190300
- Kim S.G. Extreme and exposed points of \({\mathcal L}(^nl_{\infty}^2)\) and \({\mathcal L}_s(^nl_{\infty}^2)\).
Extracta Math. 2020, 35 (2), 127–135. doi:10.17398/2605-5686.35.2.127
- Kim S.G. Extreme and exposed symmetric bilinear forms on the
space \({\mathcal
L}_s(^2l_{\infty}^2).\) Carpathian Math. Publ.
2020, 12 (2), 340–352.
doi:10.15330/cmp.12.2.340-352
- Kim S.G. Geometry of multilinear forms on \(\mathbb{R}^m\) with a certain norm.
Acta Sci. Math. (Szeged) 2021, 87 (1–2),
233–245. doi:10.14232/actasm-020-824-2
- Kim S.G. Geometry of multilinear forms on \(l_1.\) Acta Comment. Univ.
Tartu. Math. 2021, 25 (1), 57–66. In print.
- Kim S.G., Lee S.H. Exposed 2-homogeneous polynomials on Hilbert
spaces. Proc. Amer. Math. Soc. 2003,
131 (2), 449–453. doi:10.1090/S0002-9939-02-06544-9
- Krein M.G., Milman D.P. On extreme points of regular convex
sets. Studia Math. 1940, 9,
133–137.
- Milev L., Naidenov N. Strictly definite extreme points of the
unit ball in a polynomial space. C. R. Acad. Bulgare
Sci. 2008, 61 (11), 1393–1400.
- Milev L., Naidenov N. Semidefinite extreme points of the unit
ball in a polynomial space. J. Math. Anal. Appl. 2013,
405 (2), 631–641. doi:10.1016/j.jmaa.2013.04.026
- Muñoz-Fernández G., Pellegrino D., Seoane-Sepúlveda J., Weber A.
Supremum norms for 2-homogeneous polynomials on circle sectors.
J. Convex Anal. 2014, 21 (3), 745–764.
- Muñoz-Fernández G., Révész S.G., Seoane-Sepúlveda J. Geometry of
homogeneous polynomials on non symmetric convex bodies. Math.
Scand. 2009, 105 (1), 147–160.
doi:10.7146/math.scand.a-15111
- Muñoz-Fernández G., Seoane-Sepúlveda J. Geometry of Banach spaces
of trinomials. J. Math. Anal. Appl. 2008,
340 (2), 1069–1087. doi:10.1016/j.jmaa.2007.09.010
- Neuwirth S. The maximum modulus of a trigonometric
trinomial. J. Anal. Math. 2008, 104 (1), 371–396.
doi:10.1007/s11854-008-0028-2
- Ryan R.A., Turett B. Geometry of spaces of polynomials. J.
Math. Anal. Appl. 1998, 221 (2), 698–711.
doi:10.1006/jmaa.1998.5942