References

  1. Aron R.M., Klimek M. Supremum norms for quadratic polynomials. Arch. Math. (Basel) 2001, 76 (1), 73–80. doi:10.1007/s000130050544
  2. Cavalcante M., Pellegrino D., Teixeira E. Geometry of multilinear forms. Commun. Contemp. Math. 2020, 22 (2), article ID 1950011. doi:10.1142/S0219199719500111
  3. Choi Y.S., Kim S.G., Ki H. Extreme polynomials and multilinear forms on \(l_1\). J. Math. Anal. Appl. 1998, 228 (2), 467–482. doi:10.1006/jmaa.1998.6161
  4. Choi Y.S., Kim S.G. The unit ball of \(\mathcal{P}(^2l_2^2)\). Arch. Math. (Basel) 1998, 71 (6), 472–480. doi:10.1007/s000130050292
  5. Choi Y.S., Kim S.G. Extreme polynomials on \(c_0\). Indian J. Pure Appl. Math. 1998, 29, 983–989.
  6. Choi Y.S., Kim S.G. Smooth points of the unit ball of the space \(\mathcal{P}(^2l^2_1)\). Results Math. 1999, 36 (1–2), 26–33. doi:10.1007/BF03322099
  7. Choi Y.S., Kim S.G. Exposed points of the unit balls of the spaces \(\mathcal{P}(^2l_p^2)~(p=1, 2,\infty)\). Indian J. Pure Appl. Math. 2004, 35, 37–41.
  8. Dineen S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London, 1999.
  9. Gámez-Merino J., Muñoz-Fernández G., Sánchez V., Seoane-Sepúlveda J. Inequalities for polynomials on the unit square via the Krein-Milman Theorem. J. Convex Anal. 2013, 20 (1), 125–142.
  10. Grecu B.C. Geometry of three-homogeneous polynomials on real Hilbert spaces. J. Math. Anal. Appl. 2000, 246 (1), 217–229. doi:10.1006/jmaa.2000.6783
  11. Grecu B.C. Smooth 2-homogeneous polynomials on Hilbert spaces. Arch. Math. (Basel) 2001, 76 (6), 445–454. doi:10.1007/PL00000456
  12. Grecu B.C. Geometry of 2-homogeneous polynomials on \(l_p\) spaces, \(1<p<\infty\). J. Math. Anal. Appl. 2002, 273 (2), 262–282. doi:10.1016/S0022-247X(02)00217-2
  13. Grecu B.C. Extreme 2-homogeneous polynomials on Hilbert spaces. Quaest. Math. 2002, 25 (4), 421–435. doi:10.2989/16073600209486027
  14. Grecu B.C. Geometry of homogeneous polynomials on two- dimensional real Hilbert spaces. J. Math. Anal. Appl. 2004, 293 (2), 578–588. doi:10.1016/j.jmaa.2004.01.020
  15. Grecu B.C., Muñoz-Fernández G., Seoane-Sepúlveda J. The unit ball of the complex \(P(^3H)\). Math. Z. 2009, 263, 775–785. doi:10.1007/s00209-008-0438-y
  16. Kim S.G. Exposed 2-homogeneous polynomials on \(L_P^2\), \(1\leq P\leq \infty\). Math. Proc. R. Ir. Acad. 2007, 107A (2), 123–129.
  17. Kim S.G. The unit ball of \({\mathcal L}_s(^2l_{\infty}^2)\). Extracta Math. 2009, 24 (1), 17–29.
  18. Kim S.G. The unit ball of \({\mathcal P}(^2d_{*}(1, w)^2).\) Math. Proc. R. Ir. Acad. 2011, 111A (2), 77–92. doi:10.3318/pria.2011.111.1.9
  19. Kim S.G. The unit ball of \({\mathcal L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2013, 53 (2), 295–306.
  20. Kim S.G. Smooth polynomials of \({\mathcal P}(^2d_*(1, w)^2)\). Math. Proc. R. Ir. Acad. 2013, 113A (1), 45–58.
  21. Kim S.G. Extreme bilinear forms of \({\mathcal L}(^2d_*(1, w)^2)\). Kyungpook Math. J. 2013, 53 (4), 625–638.
  22. Kim S.G. Exposed symmetric bilinear forms of \({\mathcal L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2014, 54 (3), 341–347.
  23. Kim S.G. Polarization and unconditional constants of \({\mathcal P}(^2d_{*}(1, w)^2)\). Commun. Korean Math. Soc. 2014, 29 (3), 421–428. doi:10.4134/ckms.2014.29.3.421
  24. Kim S.G. Exposed bilinear forms of \({\mathcal L}(^2d_*(1, w)^2)\). Kyungpook Math. J. 2015, 55 (1), 119–126.
  25. Kim S.G. Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space. Mediterr. J. Math. 2016, 13 (5), 2827–2839. doi:10.1007/s00009-015-0658-4
  26. Kim S.G. The unit ball of \({\mathcal L}(^2 {\mathbb R}^2_{h(w)})\). Bull. Korean Math. Soc. 2017, 54 (2), 417–428. doi:10.4134/bkms.b150851
  27. Kim S.G. Extremal problems for \({\mathcal L}_s(^2\mathbb{R}_{h(w)}^2)\). Kyungpook Math. J. 2017, 57 (2), 223–232.
  28. Kim S.G. The unit ball of \({\mathcal L}_s(^2l_{\infty}^3)\). Comment. Math. 2017, 57 (1), 1–7. doi:10.14708/cm.v57i1.1230
  29. Kim S.G. The geometry of \({\mathcal L}_s(^3l_{\infty}^2)\). Commun. Korean Math. Soc. 2017, 32 (4), 991–997. doi:10.4134/ckms.c170016
  30. Kim S.G. Extreme \(2\)-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants. Studia Sci. Math. Hungar. 2017, 54 (3), 362–393. doi:10.1556/012.2017.54.3.1371
  31. Kim S.G. The geometry of \({\mathcal L}(^3l_{\infty}^2)\) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials. Extracta Math. 2018, 33 (1), 51–66. doi:10.17398/2605-5686.33.1.51
  32. Kim S.G. Extreme bilinear forms on \(\mathbb{R}^n\) with the supremum norm. Period. Math. Hungar. 2018, 77 (2), 274–290. doi:10.1007/s10998-018-0246-z
  33. Kim S.G. Exposed polynomials of \({\mathcal P}(^2 \mathbb{R}^2_{h(\frac{1}{2})})\). Extracta Math. 2018, 33 (2), 127–143. doi:10.17398/2605-5686.33.2.127
  34. Kim S.G. The unit ball of the space of bilinear forms on \(\mathbb{R}^3\) with the supremum norm. Commun. Korean Math. Soc. 2019, 34 (2), 487–494. doi:10.4134/ckms.c180111
  35. Kim S.G. Smooth points of \({\mathcal L}_s(^nl_{\infty}^2).\) Bull. Korean Math. Soc. 2020, 57 (2), 443–447. doi:10.4134/bkms.b190311
  36. Kim S.G. Extreme points of the space \({\mathcal L}(^2l_{\infty}).\) Commun. Korean Math. Soc. 2020, 35 (3), 799–807. doi:10.4134/CKMS.c190300
  37. Kim S.G. Extreme and exposed points of \({\mathcal L}(^nl_{\infty}^2)\) and \({\mathcal L}_s(^nl_{\infty}^2)\). Extracta Math. 2020, 35 (2), 127–135. doi:10.17398/2605-5686.35.2.127
  38. Kim S.G. Extreme and exposed symmetric bilinear forms on the space \({\mathcal L}_s(^2l_{\infty}^2).\) Carpathian Math. Publ. 2020, 12 (2), 340–352. doi:10.15330/cmp.12.2.340-352
  39. Kim S.G. Geometry of multilinear forms on \(\mathbb{R}^m\) with a certain norm. Acta Sci. Math. (Szeged) 2021, 87 (1–2), 233–245. doi:10.14232/actasm-020-824-2
  40. Kim S.G. Geometry of multilinear forms on \(l_1.\) Acta Comment. Univ. Tartu. Math. 2021, 25 (1), 57–66. In print.
  41. Kim S.G., Lee S.H. Exposed 2-homogeneous polynomials on Hilbert spaces. Proc. Amer. Math. Soc. 2003, 131 (2), 449–453. doi:10.1090/S0002-9939-02-06544-9
  42. Krein M.G., Milman D.P. On extreme points of regular convex sets. Studia Math. 1940, 9, 133–137.
  43. Milev L., Naidenov N. Strictly definite extreme points of the unit ball in a polynomial space. C. R. Acad. Bulgare Sci. 2008, 61 (11), 1393–1400.
  44. Milev L., Naidenov N. Semidefinite extreme points of the unit ball in a polynomial space. J. Math. Anal. Appl. 2013, 405 (2), 631–641. doi:10.1016/j.jmaa.2013.04.026
  45. Muñoz-Fernández G., Pellegrino D., Seoane-Sepúlveda J., Weber A. Supremum norms for 2-homogeneous polynomials on circle sectors. J. Convex Anal. 2014, 21 (3), 745–764.
  46. Muñoz-Fernández G., Révész S.G., Seoane-Sepúlveda J. Geometry of homogeneous polynomials on non symmetric convex bodies. Math. Scand. 2009, 105 (1), 147–160. doi:10.7146/math.scand.a-15111
  47. Muñoz-Fernández G., Seoane-Sepúlveda J. Geometry of Banach spaces of trinomials. J. Math. Anal. Appl. 2008, 340 (2), 1069–1087. doi:10.1016/j.jmaa.2007.09.010
  48. Neuwirth S. The maximum modulus of a trigonometric trinomial. J. Anal. Math. 2008, 104 (1), 371–396. doi:10.1007/s11854-008-0028-2
  49. Ryan R.A., Turett B. Geometry of spaces of polynomials. J. Math. Anal. Appl. 1998, 221 (2), 698–711. doi:10.1006/jmaa.1998.5942