References
-
Antonova T.M.
Speed of convergence of branched continued fractions of the special form.
Volynskyi Mat. Visnyk 1999, 6, 5-11. (in Ukrainian)
-
Antonova T.M., Bodnar D.I.
Convergence domains for branched continued fractions of the special form.
Approx. Theory and its Appl.: Proc. Inst. Math. NAS Ukr. 2000, 31, 19-32. (in Ukrainian)
-
Antonova T.M., Dmytryshyn R.I.
Truncation error bounds for branched continued fraction
$\displaystyle\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$.
Ukrain. Mat. Zh. 2020, 72 (7), 877-885.
doi: 10.37863/umzh.v72i7.2342
(in Ukrainian)
-
Antonova T.M., Dmytryshyn R.I.
Truncation error bounds for branched continued fraction whose partial denominators are equal to unity.
Mat. Stud. 2020, 54 (1), 3-14.
doi: 10.30970/ms.54.1.3-14
-
Baran O.E.
An analog of the Vorpits’kii convergence criterion for branched continued fractions of special form.
J. Math. Sci. 1998, 90 (5), 2348-2351.
doi: 10.1007/BF02433964
(translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 35-38. (in Ukrainian))
-
Baran O.E.
Some convergence regions of branched continued fractions of special form.
Carpathian Math. Publ. 2013, 5 (1), 4-13.
doi: 10.15330/cmp.5.1.4-13
(in Ukrainian)
-
Baran O.E.
Twin circular domains of convergence of branched continued fractions with inequivalent variables.
J. Math. Sci. 2011, 174 (2), 209-218.
doi: 10.1007/s10958-011-0291-0
(translation of Mat. Metody Fiz.-Mekh. Polya 2009, 52 (4), 73-80. (in Ukrainian))
-
Bilanyk I.B.
A truncation error bound for some branched continued fractions of the special form.
Mat. Stud. 2019, 52 (2), 115-123.
doi: 10.30970/ms.52.2.115-123
-
Bodnar D.I.
Branched continued fractions.
Naukova Dumka, Kiev, 1986. (in Russian)
-
Bodnar D.I., Bilanyk I.B.
Estimates of the rate of pointwise and uniform
convergence for branched continued fractions with nonequivalent variables.
Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72-82. (in Ukrainian)
-
Bodnar D.I., Bilanyk I.B.
On the convergence of branched continued fractions of a special form in angular domains.
J. Math. Sci. 2020, 246 (2), 188-200.
doi: 10.1007/s10958-020-04729-w
(translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 60-69. (in Ukrainian))
-
Bodnar D.I., Dmytryshyn R.I.,
Multidimensional associated fractions with independent variables and multiple power series.
Ukrainian Math. J. 2019, 71 (3), 370-386.
doi: 10.1007/s11253-019-01652-5
(translation of Ukrain. Mat. Zh. 2019, 71 (3), 325-339. (in Ukrainian))
-
Bodnar O.S., Dmytryshyn~R.I.
On the convergence of multidimensional S-fractions with independent variables.
Carpathian Math. Publ. 2018, 10 (1), 58-64.
doi: 10.15330/cmp.10.1.58-64
-
Dmytryshyn R.I.
Associated branched continued fractions with two independent variables.
Ukrainian Math. J. 2015, 66 (9), 1312-1323.
doi: 10.1007/s11253-015-1011-6
(translation of Ukrain. Mat. Zh. 2014, 66 (9), 1175-1184. (in Ukrainian))
-
Dmytryshyn R.I.
Convergence of some branched continued fractions with independent variables.
Mat. Stud. 2017, 47 (2), 150-159.
doi: 10.15330/ms.47.2.150-159
-
Dmytryshyn R.I.
Multidimensional regular C-fraction with independent variables correspon\-ding to formal multiple power series.
Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153-1870.
doi: 10.1017/prm.2019.2
-
Dmytryshyn R.I.
On some of convergence domains of multidimensional S-fractions with independent variables.
Carpathian Math. Publ. 2019, 11 (1), 54-58.
doi: 10.15330/cmp.11.1.54-58
-
Dmytryshyn R.I.
On the convergence criterion for branched continued fractions with independent variables.
Carpathian Math. Publ. 2017, 9 (2), 120-127.
doi: 10.15330/cmp.9.2.120-127
-
Dmytryshyn R.I.
On the expansion of some functions in a two-dimensional g-fraction with independent variables.
J. Math. Sci. (N.Y.) 2012, 181 (3), 320-327.
doi: 10.1007/s10958-012-0687-5
(translation of Mat. Metody Fiz.-Mekh. Polya 2010, 53 (4), 56-69. (in Ukrainian))
-
Dmytryshyn R.I.
The multidimensional generalization of g-fractions and their application.
J. Comput. Appl. Math. 2004, 164-165, 265-284.
doi: 10.1016/S0377-0427(03)00642-3
-
Dmytryshyn R.I.
The two-dimensional g-fraction with independent variables for double power series.
J. Approx. Theory 2012, 164 (12), 1520-1539.
doi: 10.1016/j.jat.2012.09.002
-
Wall H.S.
Analytic theory of continued fractions.
Van Nostrand, New York, 1948.