References
-
Aron R.M., Klimek M.
Supremum norms for quadratic polynomials.
Arch. Math. (Basel) 2001, 76 (1), 73-80.
doi: 10.1007/s000130050544
-
Cavalcante W., Pellegrino D.
Geometry of the closed unit ball of the space of bilinear forms on $\ell_{\infty}^2$.
arXiv: 1603.01535v2.
-
Choi Y.S., Kim S.G., Ki H.
Extreme Polynomials and Multilinear Forms on $l_1$.
J. Math. Anal. Appl. 1998, 228 (2), 467-482.
doi: 10.1006/jmaa.1998.6161
-
Choi Y.S., Kim S.G.
The unit ball of $\mathcal{P}(^2l_2^2)$.
Arch. Math. (Basel) 1998, 71 (6), 472-480.
doi: 10.1007/s000130050292
-
Choi Y.S., Kim S.G.
Extreme polynomials on $c_0$.
Indian J. Pure Appl. Math. 1998, 29 (10), 983-989.
-
Choi Y.S., Kim S.G.
Smooth points of the unit ball of the space $\mathcal{P}(^2l_1)$.
Results Math. 1999, 36, 26-33.
doi: 10.1007/BF03322099
-
Choi Y.S., Kim S.G.
Exposed points of the unit balls of the spaces $\mathcal{P}(^2l_p^2)~(p=1, 2,\infty)$.
Indian J. Pure Appl. Math. 2004, 35 (1), 37-41.
-
Dineen S. Complex Analysis on Infinite Dimensional Spaces.
Springer-Verlag, London, 1999.
-
Gámez-Merino J.L., Muñoz-Fernández G.A., Sánchez V.M., Seoane-Sepúlveda J.B.
Inequalities for polynomials on the unit square via the Krein-Milman Theorem.
J. Convex Anal. 2013, 20 (1), 125-142.
-
Grecu B.C.
Geometry of three-homogeneous polynomials on real Hilbert spaces.
J. Math. Anal. Appl. 2000, 246 (1), 217-229.
doi: 10.1006/jmaa.2000.6783
-
Grecu B.C.
Smooth 2-homogeneous polynomials on Hilbert spaces.
Arch. Math. (Basel) 2001, 76 (6), 445-454.
doi: 10.1007/PL00000456
-
Grecu B.C.
Geometry of 2-homogeneous polynomials on $l_p$ spaces, $ 1< p < ∞ $.
J. Math. Anal. Appl. 2002, 273 (2), 262-282.
doi: 10.1016/S0022-247X(02)00217-2
-
Grecu B.C.
Extreme 2-homogeneous polynomials on Hilbert spaces.
Quaest. Math. 2002, 25 (4), 421-435.
doi: 10.2989/16073600209486027
-
Grecu B.C.
Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces.
J. Math. Anal. Appl. 2004, 293 (2), 578-588.
doi: 10.1016/j.jmaa.2004.01.020
-
Grecu B.C., Muñoz-Fernández G.A., Seoane-Sepúlveda J.B.
The unit ball of the complex $P(^3H)$.
Math. Z. 2009, 263, 775-785.
doi: 10.1007/s00209-008-0438-y
-
Kim S.G.
Exposed 2-homogeneous polynomials on $L_P^2$, $1\leq P\leq \infty$.
Math. Proc. R. Ir. Acad. 2007, 107A (2), 123-129.
-
Kim S.G.
The unit ball of ${\mathcal L}_s(^2l_{\infty}^2)$.
Extracta Math. 2009, 24 (1), 17-29.
-
Kim S.G.
The unit ball of ${\mathcal P}(^2d_{*}(1, w)^2)$.
Math. Proc. R. Ir. Acad. 2011, 111A (2), 77-92.
-
Kim S.G.
The unit ball of ${\mathcal L}_s(^2d_*(1, w)^2)$.
Kyungpook Math. J. 2013, 53, 295-306.
-
Kim S.G.
Smooth polynomials of ${\mathcal P}(^2d_*(1,w)^2)$.
Math. Proc. R. Ir. Acad. 2013, 113A (1), 45-58.
-
Kim S.G.
Extreme bilinear forms of ${\mathcal L}(^2d_*(1,w)^2)$.
Kyungpook Math. J. 2013, 53 (2), 625-638.
-
Kim S.G.
Exposed symmetric bilinear forms of ${\mathcal L}_s(^2d_*(1, w)^2)$.
Kyungpook Math. J. 2014, 54 (3), 341-347.
-
Kim S.G.
Polarization and unconditional constants of ${\mathcal P}(^2d_{*}(1, w)^2)$.
Commun. Korean Math. Soc. 2014, 29 (3), 421-428.
doi: 10.4134/CKMS.2014.29.3.421
-
Kim S.G.
Exposed bilinear forms of ${\mathcal L}(^2d_*(1,w)^2)$.
Kyungpook Math. J. 2015, 55 (1), 119-126.
-
Kim S.G.
Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space.
Mediterr. J. Math. 2016, 13, 2827-2839.
doi: 10.1007/s00009-015-0658-4
-
Kim S.G.
The unit ball of ${\mathcal L}(^2 {\mathbb R}^2_{h(w)})$.
Bull. Korean Math. Soc. 2017, 54 (2), 417-428.
doi: 10.4134/BKMS.b150851
-
Kim S.G.
Extremal problems for ${\mathcal L}_s(^2\mathbb{R}_{h(w)}^2)$.
Kyungpook Math. J. 2017, 57 (2), 223-232.
-
Kim S.G.
The unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$.
Comment. Math. (Prace Mat.) 2017, 57 (1), 1-7.
doi: 10.14708/cm.v57i1.1230
-
Kim S.G.
The geometry of ${\mathcal L}_s(^3l_{\infty}^2$).
Commun. Korean Math. Soc. 2017, 32 (4), 991-997.\\
doi: 10.4134/CKMS.c170016
-
Kim S.G.
Extreme $2$-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants.
Studia Sci. Math. Hungar. 2017, 54 (3), 362-393.
doi: 10.1556/012.2017.54.3.1371
-
Kim S.G.
The geometry of ${\mathcal L}(^3l_{\infty}^2)$ and optimal constants in
the Bohnenblust-Hill inequality for multilinear forms and polynomials.
Extracta Math. 2018, 33 (1), 51-66.
-
Kim S.G.
Extreme bilinear forms on $\mathbb{R}^n$ with the supremum norm.
Period. Math. Hungar. 2018, 77, 274-290.
doi: 10.1007/s10998-018-0246-z
-
Kim S.G.
Exposed polynomials of ${\mathcal P}(^2 \mathbb{R}^2_{h(\frac{1}{2})})$.
Extracta Math. 2018, 33 (2), 127-143.
-
Kim S.G.
Extreme and exposed points of ${\mathcal L}(^n l^2_{\infty})$ and ${\mathcal L}_s(^n l^2_{\infty})$.
Extracta Math. 2020, 35 (2), 127-135.
doi: 10.17398/2605-5686.35.2.127
-
Kim S.G.
The unit balls of ${\mathcal L}(^nl_{\infty}^m)$ and ${\mathcal L}_s(^nl_{\infty}^m)$.
Studia Sci. Math. Hungar. 2020, 57 (3), 267-283.
doi: 10.1556/012.2020.57.3.1470
-
Kim S.G.
The unit ball of ${\mathcal L}_s(^2 \mathbb{R}^3_{{\mathcal L}_s(^2l_{\infty}^2)})$.
Preprint.
-
Kim S.G., Lee S.H.
Exposed 2-homogeneous polynomials on Hilbert spaces.
Proc. Amer. Math. Soc. 2003, 131 (2), 449-453.
-
Konheim A.G., Rivlin T.J.
Extreme points of the unit ball in a space of real polynomials.
Amer. Math. Monthly 1966, 73 (5), 505-507.
doi: 10.2307/2315472
-
Milev L., Naidenov N.
Strictly definite extreme points of the unit ball in a polynomial space.
C. R. Acad. Bulgare Sci. 2008, 61 (11), 1393-1400.
-
Milev L., Naidenov N.
Indefinite extreme points of the unit ball in a polynomial space.
Acta Sci. Math. (Szeged) 2011, 77 (3-4), 409-424.
-
Milev L., Naidenov N.
Semidefinite extreme points of the unit ball in a polynomial space.
J. Math. Anal. Appl. 2013, 405 (2), 631-641.
doi: 10.1016/j.jmaa.2013.04.026
-
Muñoz-Fernández G.A., Pellegrino D., Seoane-Sepúlveda J.B., Weber A.
Supremum norms for 2-homogeneous polynomials on circle sectors.
J. Convex Anal. 2014, 21 (3), 745-764.
-
Muñoz-Fernández G.A., Révész S.G.,Seoane-Sepúlveda J.B.
Geometry of homogeneous polynomials on non symmetric convex bodies.
Math. Scand. 2009, 105 (1), 147-160.
doi: 10.7146/math.scand.a-15111
-
Muñoz-Fernández G.A., Seoane-Sepúlveda J.B.
Geometry of Banach spaces of trinomials.
J. Math. Anal. Appl. 2008, 340 (2), 1069-1087.
doi: 10.1016/j.jmaa.2007.09.010
-
Neuwirth S.
The maximum modulus of a trigonometric trinomial.
J. Anal. Math. 2008, 104, 371-396.
doi: 10.1007/s11854-008-0028-2
-
Révész S.G.
Minimization of maxima of nonnegative and
positive definite cosine polynomials with prescribed first coefficients.
Acta Sci. Math. (Szeged) 1995, 60 (3-4), 589-608.
-
Ryan R.A., Turett B.
Geometry of spaces of polynomials.
J. Math. Anal. Appl. 1998, 221 (2), 698-711.
doi: 10.1006/jmaa.1998.5942