References

  1. Babolian E., Fattahzadeh F. Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 2007, 188 (1), 1016–1022. doi:10.1016/j.amc.2006.10.073
  2. Babolian E., Fattahzadeh F. Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 2007, 188 (1), 417–426. doi:10.1016/j.amc.2006.10.008
  3. Bastin F. A Riesz basis of wavelets and its dual with quintic deficient splines. Note Mat. 2006, 25, 55–62.
  4. Biazar J., Ebrahimi H. Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput. Math. Appl. 2012, 63 (3), 608–616. doi:10.1016/j.camwa.2011.09.059
  5. Boyd J.P. Chebyshev and Fourier Spectral Methods. Dover Publications Inc., Mineola, New York, 2001.
  6. Cesarano C. Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat. 2015, 44 (3), 535–546.
  7. Cesarano C., Ricci P.E. Orthogonality properties of the Pseudo-Chebyshev functions (Variations on a Chebyshev’s theme). Mathematics 2019, 7 (2), 180. doi:10.3390/math7020180
  8. Chui C.K. An introduction to wavelets. Academic Press, New York, 1992.
  9. Chui C.K. Wavelet: A Mathematical Tool for Signal Analysis. SIAM Publ., 1997.
  10. Daubechies I. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992. doi:10.1137/1.9781611970104
  11. Daubechies I., Lagarias J.C. Two-scale difference equations. I. Existence and global regularity of solutions. Siam. J. Math. Anal. 1991, 22 (5), 1388–1410. doi:10.1137/0522089
  12. Islam M.R., Ahemmed S.F., Rahman S.M.A. Comparision of wavelet approximation order in different smoothness spaces. Int. J. Math. Math. Sci. 2006, article ID 063670. doi:10.1155/IJMMS/2006/63670
  13. Keshavarz E., Ordokhani Y., Razzaghi M. Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 2014, 38 (24), 6038–6051. doi:10.1016/j.apm.2014.04.064
  14. Lal S., Bhan I. Approximation of Functions Belonging to Generalized Hölder’s Class \(H_{\alpha}^{(\omega)}[0, 1)\) by First Kind Chebyshev Wavelets and Its Applications in the Solution of Linear and Nonlinear Differential Equations. Int. J. Appl. Comput. Math. 2019, 5 (6), article number 155. doi:10.1007/s40819-019-0729-5
  15. Lal S., Kumari P. Approximation of a function \(f\) of generalized Lipschitz class by its extended Legendre wavelet series. Int. J. Appl. Comput. Math. 2018, 4 (6), article number 147. doi:10.1007/s40819-018-0577-8
  16. Lal S., Kumar M. Approximation of functions of space \(L^2{(\mathbb{R})}\) by wavelet expansions. Lobachevskii J. Math. 2013, 34 (2), 163–172. doi:10.1134/S1995080213020091
  17. Lal S., Kumar S. Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai J. Math. 2017, 15 (2), 409–419.
  18. Lal S., Kumar S. Quasi-positive delta sequences and their applications in wavelet approximation. Int. J. Math. Math. Sci. 2016, 2, article ID 9121249. doi:10.1155/2016/9121249
  19. Lal S., Kumar R. The approximations of a function belonging Hölder class \(H^{\alpha}[0,1)\) by second kind Chebyshev wavelet method and applications in solutions of differential equation. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17 (1), article ID 1850062. doi:10.1142/S0219691318500625
  20. Lal S., Kumar V. Approximation of a function \(f\) belonging to Lipschitz class by Legendre wavelet method. Int. J. Appl. Comput. Math. 2019, 5, article number 70. doi:10.1007/s40819-019-0648-5
  21. Lal S., Kumar V., Patel N. Wavelet estimation of a function belonging to Lipschitz class by first kind Chebyshev wavelet method. Albanian J. Math. 2019, 13 (1), 95–106.
  22. Lal S., Sharma V.K. On the estimation of functions belonging to Lipschitz class by block pulse functions and hybrid Legendre polynomials. Carpathian Math. Publ. 2020, 12 (1), 111–128. doi:10.15330/cmp.12.1.111-128
  23. Mason J.C., Handscomb D.C. Chebyshev Polynomials. Chapman and Hall/CRC, Florida, 2003. doi:10.1201/9781420036114
  24. Meyer Y. Wavelets: their past and their future. In: Meyer Y., Roques S. (Eds.) Progress in Wavelet Analysis and applications, Frontieres, Gif-sur-Yvette, 1993, 9–18.
  25. Mohammadi F. A wavelet-based computational method for solving stochastic Itô-Volterra integral equations. J. Comput. Phys. 2015, 298, 254–265. doi:10.1016/j.jcp.2015.05.051
  26. Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and sampling Theory, part I: complex signal and scattering in multilayered media. Geophysics 1982, 47 (2), 203–221. doi:10.1190/1.1441328
  27. Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and sampling Theory, part II: Sampling theory and complex waves. Geophysics 1982, 47 (2), 222–236. doi:10.1190/1.1441329
  28. Natanson I.P. Constructive theory of functions. Ungar, New York, 1964.
  29. Razzaghi M., Yousefi S. The Legendre wavelets operational matrix of integration. Internat. J. Systems Sci. 2001, 32 (4), 495–502. doi:10.1080/00207720120227
  30. Rehman S., Siddiqi A.H. Wavelet based correlation coefficient of time series of Saudi Meteorological Data. Chaos Solitons Fractals 2009, 39 (4), 1764–1789. doi:10.1016/j.chaos.2007.06.054
  31. Ricci P.E. Alcune osservazioni sulle potenze delle matrici del secondo ordine e sui polinomi di Tchebycheff di seconda specie. Atti Accad. Sci. Torino 1975, 109, 405–410.
  32. Ricci P.E. Complex spirals and pseudo-Chebyshev polynomials of fractional degree. Symmetry 2018, 10 (12), 671. doi:10.3390/sym10120671
  33. Ricci P.E. Una proprieta iterativa dei polinomi di Chebshev di prima specie in piu variabili. Rend. Mater. Appl. 1986, 6, 555–563.
  34. Rivlin T.J. The Chebyshev Polynomials. J. Wiley and Sons, New York, 1974.
  35. Strang G. Wavelet transforms versus Fourier transforms. Bull. Amer. Math. Soc. (N.S.) 1993, 28 (2), 228–305.
  36. Strang G., Nguyen T. Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996.
  37. Sweldens W., Piessens R. Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximations of smooth functions. Siam. J. Numer. Anal. 1994, 31 (4), 1240–1264.
  38. Venkatesh Y.V., Ramani K., Nandini R. Wavelet array decomposition of images using a Hermite sieve. Sadhana 1993, 18, 301–324. doi:10.1007/BF02742663
  39. Walter G.G. Approximation of the delta functions by wavelets. J. Approx. Theory 1992, 71 (3), 329–343. doi:10.1016/0021-9045(92)90123-6
  40. Walter G.G. Pointwise convergence of wavelet expansions. J. Approx. Theory 1995, 80 (1), 108–118. doi:10.1006/jath.1995.1006
  41. Zygmund A. Trigonometric Series. Cambridge University Press, 2003. doi:10.1017/CBO9781316036587