References
- Babolian E., Fattahzadeh F. Numerical computation method in
solving integral equations by using Chebyshev wavelet operational matrix
of integration. Appl. Math. Comput. 2007, 188 (1),
1016–1022. doi:10.1016/j.amc.2006.10.073
- Babolian E., Fattahzadeh F. Numerical solution of differential
equations by using Chebyshev wavelet operational matrix of
integration. Appl. Math. Comput. 2007, 188 (1),
417–426. doi:10.1016/j.amc.2006.10.008
- Bastin F. A Riesz basis of wavelets and its dual with quintic
deficient splines. Note Mat. 2006, 25, 55–62.
- Biazar J., Ebrahimi H. Chebyshev wavelets approach for nonlinear
systems of Volterra integral equations. Comput. Math. Appl. 2012,
63 (3), 608–616. doi:10.1016/j.camwa.2011.09.059
- Boyd J.P. Chebyshev and Fourier Spectral Methods. Dover Publications
Inc., Mineola, New York, 2001.
- Cesarano C. Integral representations and new generating functions
of Chebyshev polynomials. Hacet. J. Math. Stat. 2015,
44 (3), 535–546.
- Cesarano C., Ricci P.E. Orthogonality properties of the
Pseudo-Chebyshev functions (Variations on a Chebyshev’s theme).
Mathematics 2019, 7 (2), 180.
doi:10.3390/math7020180
- Chui C.K. An introduction to wavelets. Academic Press, New York,
1992.
- Chui C.K. Wavelet: A Mathematical Tool for Signal Analysis. SIAM
Publ., 1997.
- Daubechies I. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.
doi:10.1137/1.9781611970104
- Daubechies I., Lagarias J.C. Two-scale difference equations. I.
Existence and global regularity of solutions. Siam. J. Math. Anal.
1991, 22 (5), 1388–1410. doi:10.1137/0522089
- Islam M.R., Ahemmed S.F., Rahman S.M.A. Comparision of wavelet
approximation order in different smoothness spaces. Int. J. Math.
Math. Sci. 2006, article ID 063670. doi:10.1155/IJMMS/2006/63670
- Keshavarz E., Ordokhani Y., Razzaghi M. Bernoulli wavelet
operational matrix of fractional order integration and its applications
in solving the fractional order differential equations. Appl. Math.
Model. 2014, 38 (24), 6038–6051.
doi:10.1016/j.apm.2014.04.064
- Lal S., Bhan I. Approximation of Functions Belonging to
Generalized Hölder’s Class \(H_{\alpha}^{(\omega)}[0, 1)\) by First Kind
Chebyshev Wavelets and Its Applications in the Solution of Linear and
Nonlinear Differential Equations. Int. J. Appl. Comput. Math. 2019,
5 (6), article number 155.
doi:10.1007/s40819-019-0729-5
- Lal S., Kumari P. Approximation of a function \(f\) of generalized Lipschitz class by its
extended Legendre wavelet series. Int. J. Appl. Comput. Math. 2018,
4 (6), article number 147.
doi:10.1007/s40819-018-0577-8
- Lal S., Kumar M. Approximation of functions of space \(L^2{(\mathbb{R})}\) by wavelet
expansions. Lobachevskii J. Math. 2013, 34 (2),
163–172. doi:10.1134/S1995080213020091
- Lal S., Kumar S. Best wavelet approximation of functions
belonging to generalized Lipschitz class using Haar scaling
function. Thai J. Math. 2017, 15 (2), 409–419.
- Lal S., Kumar S. Quasi-positive delta sequences and their
applications in wavelet approximation. Int. J. Math. Math. Sci.
2016, 2, article ID 9121249.
doi:10.1155/2016/9121249
- Lal S., Kumar R. The approximations of a function belonging
Hölder class \(H^{\alpha}[0,1)\) by
second kind Chebyshev wavelet method and applications in solutions of
differential equation. Int. J. Wavelets Multiresolut. Inf. Process.
2019, 17 (1), article ID 1850062.
doi:10.1142/S0219691318500625
- Lal S., Kumar V. Approximation of a function \(f\) belonging to Lipschitz class by
Legendre wavelet method. Int. J. Appl. Comput. Math. 2019,
5, article number 70. doi:10.1007/s40819-019-0648-5
- Lal S., Kumar V., Patel N. Wavelet estimation of a function
belonging to Lipschitz class by first kind Chebyshev wavelet
method. Albanian J. Math. 2019, 13 (1),
95–106.
- Lal S., Sharma V.K. On the estimation of functions belonging to
Lipschitz class by block pulse functions and hybrid Legendre
polynomials. Carpathian Math. Publ. 2020, 12 (1),
111–128. doi:10.15330/cmp.12.1.111-128
- Mason J.C., Handscomb D.C. Chebyshev Polynomials. Chapman and
Hall/CRC, Florida, 2003. doi:10.1201/9781420036114
- Meyer Y. Wavelets: their past and their future. In: Meyer Y., Roques
S. (Eds.) Progress in Wavelet Analysis and applications, Frontieres,
Gif-sur-Yvette, 1993, 9–18.
- Mohammadi F. A wavelet-based computational method for solving
stochastic Itô-Volterra integral equations. J. Comput. Phys. 2015,
298, 254–265. doi:10.1016/j.jcp.2015.05.051
- Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and
sampling Theory, part I: complex signal and scattering in multilayered
media. Geophysics 1982, 47 (2), 203–221.
doi:10.1190/1.1441328
- Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and
sampling Theory, part II: Sampling theory and complex waves.
Geophysics 1982, 47 (2), 222–236.
doi:10.1190/1.1441329
- Natanson I.P. Constructive theory of functions. Ungar, New York,
1964.
- Razzaghi M., Yousefi S. The Legendre wavelets operational matrix
of integration. Internat. J. Systems Sci. 2001, 32
(4), 495–502. doi:10.1080/00207720120227
- Rehman S., Siddiqi A.H. Wavelet based correlation coefficient of
time series of Saudi Meteorological Data. Chaos Solitons Fractals
2009, 39 (4), 1764–1789.
doi:10.1016/j.chaos.2007.06.054
- Ricci P.E. Alcune osservazioni sulle potenze delle matrici del
secondo ordine e sui polinomi di Tchebycheff di seconda specie.
Atti Accad. Sci. Torino 1975, 109, 405–410.
- Ricci P.E. Complex spirals and pseudo-Chebyshev polynomials of
fractional degree. Symmetry 2018, 10 (12), 671.
doi:10.3390/sym10120671
- Ricci P.E. Una proprieta iterativa dei polinomi di Chebshev di
prima specie in piu variabili. Rend. Mater. Appl. 1986,
6, 555–563.
- Rivlin T.J. The Chebyshev Polynomials. J. Wiley and Sons, New York,
1974.
- Strang G. Wavelet transforms versus Fourier transforms.
Bull. Amer. Math. Soc. (N.S.) 1993, 28 (2),
228–305.
- Strang G., Nguyen T. Wavelets and Filter Banks. Wellesley-Cambridge
Press, 1996.
- Sweldens W., Piessens R. Quadrature Formulae and Asymptotic Error
Expansions for Wavelet Approximations of smooth functions. Siam. J.
Numer. Anal. 1994, 31 (4), 1240–1264.
- Venkatesh Y.V., Ramani K., Nandini R. Wavelet array decomposition
of images using a Hermite sieve. Sadhana 1993, 18,
301–324. doi:10.1007/BF02742663
- Walter G.G. Approximation of the delta functions by
wavelets. J. Approx. Theory 1992, 71 (3), 329–343.
doi:10.1016/0021-9045(92)90123-6
- Walter G.G. Pointwise convergence of wavelet expansions. J.
Approx. Theory 1995, 80 (1), 108–118. doi:10.1006/jath.1995.1006
- Zygmund A. Trigonometric Series. Cambridge University Press, 2003.
doi:10.1017/CBO9781316036587