References

  1. Anulova S.V. Diffusion processes discontinuos coefficients, degenerate diffusion, randomized drift. Dokl. Akad. Nauk 1981, 260 (5), 1036-1040.
  2. Bazalii B.V. On a model problem with second derivatives with respect to geometric variables in the boundary condition for second-order parabolic equations. Math. Notes 1998, 63 (3), 411-415. doi: 10.1007/BF02317790 (translation of Mat. Zametki 1998, 63 (3), 468-472).
  3. Dynkin E.B. Markov Processes. Academic Press, New York, Springer, Berlin, 1965.
  4. Eidelman S.D. Parabolic Systems. Nauka, Moscow, 1964. (in Russian)
  5. Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, 1964.
  6. Ikeda N., Watanabe S. Stochastic differential equations anddiffusion processes. North-Holland, Amsterdam-New York, Tokyo, 1981.
  7. Ivasishen S.D. Green Matrices of Parabolic Boundary-Value Problems. Vyshcha Shkola, Kyiv, 1990. (in Russian)
  8. Konenkov A.N. On the relation between fundamental solutions of elliptic and parabolic equations. Diff. equations, 2002, 38 (2), 247-256. (in Russian)
  9. Kopytko B.I., Novosyadlo A.F. The brownian motion process with generalized diffusion matrix and drift vector. Theory Stoch. Process. 2008, 14 (30) (2), 60-70.
  10. Kopytko B.I., Novosyadlo A.F. Analytical model of a generalized diffusion process with a membrane located on a curved surface. Nauk. Visnyk of the Chernivtsi Univ. Ser. Math. 2011, 1 (1-2), 64-75. (in Ukrainian)
  11. Kopytko B.I., Portenko M.I. The problem of pasting together two diffusion processes and classical potentials. Theory Stoch. Process. 2009, 15 (31) (2), 126-139.
  12. Kopytko B.I., Tsapovska Zh.Ya. Initial boundary-value problem with Wentzel-type conjugation condition for a parabolic equation with discontinuous coefficients. J. Math. Sci. (N.Y.) 2009, 160 (3), 283-295. doi: 10.1007/s10958-009-9497-9 (translation of Mat. Metody Fiz.-Mekh. Polya 2008, 51 (1), 7-16. (in Ukrainian)).
  13. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Linear and Quasi-Linear Equations of Parabolic Type. AMS, Providence, RI, 1968.
  14. Matiichuk M.I. Parabolic and Eliptic Boundary-Value Problems with Singularities. Prut, Chernivtsi. 2003. (in Ukrainian)
  15. Mikulevicius R. The existence of solutions of the martingale problem. Lith. Math. J. 1977, 17 (4), 149-167.
  16. Miranda K. Equations with partial derivatives of elliptic type. Publisher of foreign literature, Moscow, 1957. (in Russian)
  17. Novosyadlo A. To the question of constructing a diffusion process that admits a generalized drift vector and a diffusion matrix. Math. Visn. NTSH. 2008, 4, 227-241. (in Ukrainian)
  18. Pilipenko A.Yu. An Inrtoduction to Stochastic Differential Equations with Reflection. Universitatsverlag, Potsdam, 2014.
  19. Pogorzelski W. Równanie całkowe i ich zastosowania. Tom IV. PWN, Warszawa, 1970.
  20. Portenko N.I. Generalized Diffusion Processes. AMS, Providence, RI, 1990 (translation of Naukova Dumka, Kyiv, 1982)
  21. Portenko M.I. Diffusion Processes in Media with Membranes. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., Kyiv, 1995. (in Ukrainian)
  22. Solonnikov V.A. On boundary-value problems for linear parabolic systems of differential equations of the general type. Tr. Mat. Inst. Akad. Nauk SSSR 1965, 83, 3-162. (in Russian)
  23. Taira K. On the existence of Feller semigroups with boundary conditions. Mem. Amer. Math. Soc. 1992, 99 (475), 1-65.
  24. Wentzel A.D. On boundary conditions fot multidimensional diffusion processes. Theory Probab. Appl. 1959, 4 (2), 164-177. doi: 10.1137/1104014
  25. Zaitseva L.L. On a multidimensional Brownian motion with partly reflecting membrane on a hyperplane. Theory Stoch. Process. 1999, 5 (21), (3-4), 258-262.
  26. Zhitarashu N.V., Eidel'man S.D. Parabolic Boundary-Value Problems. Shtiintsa, Kishenev, 1992. (in Russian)