References
-
Ahmad O., Shah F.A., Sheikh N.A.
Gabor frames on non-Archimedean fields.
Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850079 (17 pages).
doi: 10.1142/S0219887818500792
-
Christensen O.
An Introduction to Frames and Riesz Bases.
Birkhäuser, Boston, 2016.
-
Daubechies I., Grossmann A., Meyer Y.
Painless non-orthogonal expansions.
J. Math. Phys. 1986, 27 (5), 1271-1283.
doi: 10.1063/1.527388
-
Duffin R.J., Shaeffer A.C.
A class of nonharmonic Fourier series.
Trans. Amer. Math. Soc. 1952, 72, 341-366.
doi: 10.2307/1990760
-
Farkov Yu.A.
Orthogonal $p$-wavelets on $\mathbb R^+$.
In: Proc. Int. Conf. Wavelets and Splines, St. Peterburg State University, 4-26, 2005.
-
Farkov Yu.A., Rodionov E.A.
Nonstationary wavelets related to the Walsh functions.
Amer. J. Comput. Math. 2012, 2, 82-87.
doi: 10.4236/ajcm.2012.22011
-
Farkov Yu.A.
On wavelets related to Walsh series.
J. Approx. Theory 2009, 161, 259-279.
doi: 10.1016/j.jat.2008.10.003
-
Gabor D.
Theory of communications.
J. Inst. Elect. Engn. 1946, 93, 429-457.
-
Gröchenig K., Janssen A.J., Kaiblinger N., Pfander G.
Note on $B$-splines, wavelet scaling functions, and Gabor frames.
IEEE Trans. Inform. Theory 2003, 49 (12), 3318-3320.
doi: 10.1109/TIT.2003.820022
-
Gröchenig K.
Foundation of Time-Frequency Analysis.
Birkhäuser, Boston, 2001.
-
Golubov B.I., Efimov A.V., Skvortsov V.A.
Walsh Series and Transforms: Theory and Applications.
Kluwer, Dordrecht, 1991.
-
Ron A., Shen Z.
Weyl-Heisenberg frames and Riesz bases in $L^2(\mathbb R^d )$.
Duke Math. J. 1997 89 (2), 237-282.
doi: 10.1215/S0012-7094-97-08913-4
-
Schipp F., Wade W.R., Simon P.
Walsh Series: An Introduction to Dyadic Harmonic Analysis.
Adam Hilger, Bristol and New York, 1990.
-
Shah F.A.
Gabor frames on a half-line.
J. Contemp. Math. Anal. 2012, 47 (5), 251-260.
doi: 10.3103/S1068362312050056
-
Shah F.A., Ahmad O., Sheikh N.A.
Orthogonal Gabor systems on local fields.
Filomat 2017, 31 (16), 5193-5201.
doi: 10.2298/FIL1716193S
-
Shah F.A., Ahmad O.
Wave packet systems on local fields.
J. Geom. Phys. 2017, 120, 5-18.
doi: 10.1016/j.geomphys.2017.05.015
-
Shah F.A., Ahmad O., Rahimi A.
Frames Associated with Shift Invariant Spaces on Local Fields.
Filomat 2018, 32 (9), 3097-3110.
doi: 10.2298/FIL1809097S
-
Zhang Y.
Walsh Shift-Invariant Sequences and p-adic Nonhomogeneous Dual Wavelet Frames in $L^2(\mathbb R^+)$.
Results Math. 2019, 74, 111, 26 pp.
doi: 10.1007/s00025-019-1034-7