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We construct the group H(A) associated with a brace A and investigate the properties of
H(A).

INTRODUCTION

Let (A, +) be an abelian group with a multiplication “-”. As in [5] we call A a brace if A
is right distributive, i.e.

i) (a+0b)-c=(a-c)+ (b-c) for all a,b,c € A, and
i1) A is a group with respect to circle operation “o” defined by the rule

aob=a+b+a-b.

A group (A, o) is called the adjoint group of a brace A and denoted by A°. It is easy to
see that
ao0=0=0o0a

and so 0 is the neutral element of A°. The inverse of a € A will be denoted by a(~V.
An abelian group (M, +) is called a module [6] (with the neutral element e) over a brace
A if there exists a mapping
MxA> (z,a)—zae M

such that the following hold for any elements z,y € M and a,b € A:
m1) (z+y)a = za+ ya,
msy) x(aob) = (xa)b+ xa+ xb,

mg) z0 = e.
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Since
ea = (e+e)a = ea+ ea,

we conclude that

ea=e
for any a € A. In view of  + (—z) = e we also obtain that
0=eca=(x+(—2))a=za+(—x)a
and therefore
(—x)a = —(za) = —za.

A non-empty set L C M is called a submodule of a module M if the following two
conditions hold:

s1) L is a subgroup of (M, +),
s3) la€ L forany [l € L and a € A.

Let A be a brace, L a submodule of an A-module M, T a subgroup of A°. On the set of
pairs
H(L,T)=A{(,t)|le L,teT}

we define a multiplication by the rule
(z,y)(u,v) = (zv+ 2 +u,yov) (1)
for z,u € L and y,v € T. Then H(L,T) is a group (see Lemma 1). We prove the following

Theorem 1. Let M be a module over a brace A, L a non-zero submodule of M, T a non-zero
subgroup of A°. Then
H=H(LT)=ExF

is a Frobenius group with a kernel Ef and a complement F', where FE is isomorphic to the
additive group Lt of L and F is isomorphic to a subgroup T, if and only if the following
hold:

(i) L = Lh for every non-zero element h € T,
(ii)) annpl = {t € T' | It = e} = {0} for every non-zero element | € L.

Recall [5] that
An+1 — A(An)

and
Aln+1) — (A(”))A

for any positive integer n. Then A™ is a right ideal and A™ is a two-sided ideal in A. A brace
A is called right nilpotent (respectively left nilpotent) if A®™ = {0} for some positive integer
n. A minimal positive integer n with this property is called an index of right (respectively
left) nilpotency. In this way we obtain the following
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Theorem 2. (1) If A is a non-zero left nilpotent brace, then
(i) H(A) is a nilpotent group;
(ii) ann A # {0}.
(2) If A is a right nilpotent brace, then H(A) is a solvable group.

Henceforth, H <1 G means that H is a normal subgroup of a group G and E' x F' is a
semidirect product of groups E, F' with a normal subgroup F.
Any unexplaned terminology is standard as in [4].

1. The group associated with a brace. It is not difficult to prove the following

Lemma 1. Let M be a module over a brace A. If L is a submodule of M and T is a
subgroup of A°, then
H=H(LT)=ExF

is a group with the identity element (e, 0) under the operation (1) and, moreover, E = {(l,0) |
[ € L} is isomorphic to the additive group of L and F = {(e,t) | t € T'} is isomorphic to T.

Proof. 1t is easily verified that H(L,T) is a group, for any a,l € L, b€ T
(a,b) ' = (—a—ab™V V) e H

and
(a,b) = (e,b)(a,0) € EF,

(1,0) = (a,b)"(1,0)(a,b) = (—a — ab™Y, bV (1,0)(a,b) = (Ib+1,0) € E,
so F is a normal subgroup of H,
ENF ={(e0)}.
Hence H = E x F is a semidirect product. Finally, the maps
e:Lo3l— (,0)ec Eand ¢y : T >t (e,t) € F
are group isomorphisms. O
Corollary 1. A group H(L,T) is abelian if and only if LT = {e} and T is an abelian group.
A non-empty set S is called a subbrace of of a brace A (see [6]) if the following hold:
s1) (S,+) is a subgroup of (A, +),
S9) uv € S for any u,v € S.

It is obviously that {0} and A are trivial subbraces in A. Since A can be regarded as A-
module, every submodule I of A-module A is called a right ideal of A [5] (there is no similar
concept of a left ideal). Therefore I is a right ideal of A if and only if the following hold:
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i1) (I,+) is a subgroup of (4, +),
ia) ta € I for any i € I and a € A.
If, moreover, I satisfies the condition
i3) ai € I for any ¢ € [ and a € A,

then I is called a two-sided ideal (for short an ideal) of A. Any (right or two-sided) ideal of
A is a subbrace in A. For any brace A

e the left annihilator
anny A ={u € A|uA={0}}

is a right ideal of A,

e the right annihilator
ann, A= {ve A| Av={0}}

is a two-sided ideal of A. In [5] ann, A is denoted by Soc(A). Obviously that ann A =
ann, A Nann; A is a two-sided ideal in A. Element a € A is called a left (respectively right)
zero divisor if it satisfies the following two conditions:

Zl) a 7é 07
z9) ab = 0 (respectively ca = 0) for some non-zero element b € A (respectively ¢ € A).
Element a € A that is a left and a right zero divisor is called a zero divisor of A.

Remark 1. Ifa brace A is left distributive, then A becomes a radical ring (i.e., an associative
ring which is a group with respect to the circle operation “o”). The group H(A", A°), where
A is a radical ring, was constructed by Ya.P.Sysak [1] and called the associated group of a
radical ring A. Similarly, we will say that the group H(A) = H(A™, A°) is associated with
a brace A.

Lemma 2. Let A be a brace with the associated group H(A) = E x F. If S is a subbrace
of A with the associated group H(S) = U x W, then the following conditions hold:

(1) H(S) < H(A), U< Eand W < F,

(2) if S is a right ideal of A, then U < H(A),

(3) if S is an ideal of A, then U < H(A) and H(S) < H(A),
(4) if U < H(A), then SAC S,

(5) if H(S) < E x W, then AS C S,
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(6) the centralizers
Cg(F)={(a,0) € E|a € ann A} and Cp(F) = {(0,u) € F' | u € ann, A};
in particular, is A not contains left and right zero divisors, then

Cr(E) = Cp(F) ={(0,0)}.

Proof. (1) follows from definition of H(A).
(2) Let S be a right ideal of A. Then sa € S for any s € S, a € A and so

(5,00 = (—a — ab™V, bV (s,0)(a,b) = (sb+5,0) € U (2)

for any elements (a,b) € H(A) and (s,0) € U. This means that U is a normal subgroup of
H(A).
(3) Assume that S is an ideal of A, (a,b) € H(A) and (s,t) € H(S). Then
(5,1) @) = (—(at)b — at — ((ab"V)t)b + sb + s — (ab=)t,
t+tb+ (V)b +bVt) € H(9),
and hence H(S) is normal in H(A).
(4) Since U < H(A), from (2) it follows that sb+s € S for any s € S, b € A and therefore

sbe S.
(5) Let us H(S) < E x W. Then for any a € A and u,v,w € S we deduce that

H(S) > (u,v)@®) =
(—(av)w — ((aw"D)v)w — aw — (aw™Y)w + vw — av—
(aw ") — aw =Y + u,wY ovow) =
(—(av)w — ((aw"™)v)w + vw — av — (aw =)o 4+ u, v + vw + (W Hv)w + wHw).

If w = 0, then we obtain that (—av + u,v) € H(S), and so AS C S.
(6) Assume that (a,0) € Cg(F). Then (a,0)(0,b) = (0,b)(a,0) for every b € A and
consequently ab = 0. If (0,u) € Cr(FE), then

(0-0+0+b,u00) = (0,u)(b,0) = (b,0)(0,u) = (bu+b+0,00u)
and therefore bu = 0. O

Lemma 3. If A is a brace and a,b € A, then (a,b) € Z(H(A)) if and only if aA = {0} and
Ab = {0} = bA.

Proof. (=) Let us (a,b) € Z(H(A)). Then for any elements u,v € A we see that

(av +a -+ u,bov) = (a,b)(u,v) = (u,0)(a,b) = (ub+ u -+ a,v 0 b) 3)
if and only if
bov = wob,
av = ub.

Hence bv = vb. If u = 0, then av = 0 (and we obtain that aA = {0}). In the case v = 0 it
follows that ub = 0 ( and consequently Ab = {0}).
(<) Since ub = 0 = av for any u,v € A, we conclude that (u,v) € Z(H(A)). O
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Remark 2. (1) For any element a of a brace A the centralizers
Cao(a) ={2z€ A°|zoa=aoz} and Cy(a) ={z € A| za = az}

are equal.
(2) If
Z(A)={z€ Al za=az forevery ac A}

and
Zy(A°)={z€ A°|zoa=aoz forevery aec A°},

then Z(A) = Z,(A°) is a normal subgroup in A°.
Let S be a two-sided ideal of a brace A. On the set
A/S={a+S|aec S}
we have two operations “+” and “-” (see [6]) given by the rules:
o (a1 +95)+ (a2 +95) = (a1 +az)+ S,

e (a1 +95):(ag+ S5) = (a1a2) + S for aj,as € A. Then (A/S,+,-) is a brace (and A/S
is called the quotient brace of A with respect to an ideal S).

Lemma 4. If S is an ideal of a brace A, then the groups (A/S)° and A°/S° are isomorphic.
Proof. In fact, the rule

p:(A/S) a4+ S ao0S° e A°/S°
is a group isomorphism. O

Lemma 5. If S is a two-sided ideal of a brace A, then the groups H(A)/H(S) and H(A/S)

are isomorphic.

Proof. Assume that H(A) = Ex F, H(S) = U x W and H(A/S) = @ x R. Then, by
Lemma 2, we have that U < F, W < F and so

H(A)/H(S) = (E x F)/H(S) = (EH(S)/H(S)) x (FH(S)/H(S)) =
— (EUW/UW) x (FUW/UW) = (EW/UW) x (FW/UW).

Furthermore, we have the group isomorphisms
Q= (A/S)T =2 AT /ST =2 E/U = EW/UW

and, by Lemma 4,
R=(A)S)=A°/S° = F/W = FU/WU.

The lemma is prowed. O
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2. Frobenius groups. Recall that a group H = E x F' is called a Frobenius group with
a kernel E' and a complement F' if
FNFI={1}

for all g € H \ F and
E\N{1}=H\ | J F".

heH

Proof of Theorem 1. Assume that H = E x I is a Frobenius group with £ = L* and
F = T. By Lemma 1.1 of [3], for any elements h € T and | € L there exists [; € L such that
(1,0) = [(11,0), (e, h)] and consequently (1,0) = (I,0)" (e, h)"*(l1,0)(e, h) = (I1h,0). Then
I = l;h and we conclude that L = Lh for any 0 #h € T.

Suppose that It = e for some t € T and 0 # [ € L. Then

{(e,0)} = F(YF"9 3 (e, ) = (=it,0), (4)

which implies that t = 0 and anny [ = {0}.

(<) Assume that a group H = E x F satisfies the conditions (i) and (i7). If 0 # v € T and
k € L, then k = kyv for some k; € L and the commutator [(ky,0), (0,¢e)] = (k1v,0) = (k,0)
for any (e,0) # (e,t) € F. This means that £ = [E, (e,t)]. Moreover, for any elements
(u,v) € H and (e, t) € F we see that

FU 5 (e, 1)) = (—(ut)v — ut — ((wvo"Nt)v — (w0 ot ow).
If v =0 and u # 0, then (—ut,t) = (e, )" € F(0)  This gives that

H\ |J FO = B\ {(e,0)}.

(u,v)eH
Now we assume that (e, h)®%) € Fn F®v) for some h,v € T and 0 # u € L. Then
(e, ) ) = (—u(v"Y o howv), o™V o how),

and therefore —u(v(=Y o h o v) = e. From this, in view of (i), we have v~ o h o v = 0 and
consequently h = 0. Hence

F(\F“ = {(e,0)}

and H is a Frobenius group with a kernel E and a complement F. O
Let R be an associative ring with 1, A be a right R-module. If 4 : A — U(R) is an
additive map and
plap(b)) = pla)

for all a,b € A, then (A, +,-) is a brace (see Example 1 of [5]) with a multiplication “-” given
by the rule

ab = a(u(b) - 1) (5)
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Example 1. As in Example 3 of [5], A ={0,1,2,3,4,5}, AT 2 Zg and n : A — U(Zg) is
such that

1(0) = p(2) = p(4) = 1,
pu(1) = pu(3) = u(5) = 0.

Then (A, +,-) is a brace with the multiplication given by (5) (and depicted by Table):

- Jof1]2]3]4]5]
offofofofofo]o
1[of4fof4]0]4
2of2]0]2]0]2
3olofo]ofo]o
alfofalof4alo]4
5ol2]0]2]0]2

If L ={0,2,4}, then LA = L and so L is an A-module. Since T' = {0,5} is a subgroup
in A°,
L-5=1{0-52-54-5}=1{0,2,4} =L

and
anny 2 = {0} = anny 4,

we conclude that H(L,T) is a Frobenius group.
3. Nilpotent braces. In this section we investigate the properties of nilpotent braces.
Lemma 6. If A is a brace and k > 0, then A®+Y is an ideal of A®).
Proof. Tt is easy to seen that A®*+Y is a subgroup of A®). Since
A(k+1)A(k) C A(k+1)A - A(k+2) C A(k+1)

and
AR ABHD) C AR 4 C AKR+D),

we obtain the result. O
Remark 3. Let A be a brace and p a prime. Then
(1) H(A) is a torsion group if and only if A* and A° are torsion;
(2) H(A) is a p-group if and only if AT and A° are p-groups.
As in Lemma 2.4 of [2] we can prove the next
Theorem 3. Let A be a right nilpotent (respectively left nilpotent) brace, p a prime. Then

(1) AT is a p-group if and only if A° is a p-group;
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(2) A" is a torsion-free group if and only if A° is a torsion-free group.

Proof. (a) Asuume that A is a right nilpotent brace of index n. We prove by induction on
n. Since

A(n—l)A(n—l) C A(n—l)A _ {0}’

we conclude that AV is a commutative radical ring. Now we assume that the result is
true for right nilpotent braces of index < n. Since

(A/AP)) C (AJA®) - (A]A®) = AP A® = (0},
we have group isomorphisms
(AJAP)T =2 (A/AR)) 2= A2 /(A®)7

and the assertion follows.
(b) For arbitrary k, A* is an ideal of A,

(AR ARFL)F o (AR AR+ Yo
and for a left nilpotent brace A the assertion is also true. O
Lemma 7. Let A be a brace. Then Z(H(A)) # {(0,0)} if and only if ann; A # {0}.
Proof. (<) If 0 # a € ann; A, then, by Lemma 2, (a,0) € Cg (F') and therefore
(0,0) # (a,0) € Z(H(A)).
(=) If (a,0) € Z(H(A)) for some 0 # a € A, then for any elements u,v € A we obtain
(av + a + u,v) = (a,0)(u,v) = (u,v)(a,0) = (u+ a,v).
This yields that av = 0 and so a € ann; A. n
Corollary 2. Let A be a brace. If H(A) = E x F and Z(H(A)) € E, then
Z(A)Nann, A # {0}.
Proof. Assume that (a,b) € Z(H(A)) and b # 0. Then for any u € A we have
(a+u,b) = (a,b)(u,0) = (u,0)(a,b) = (ub+ u + a, b)

and
(au+a,bou) = (a,b)(0,u) = (0,u)(a,b) = (a,uob)

and consequently ub = 0, au = 0 and bou = wob. This yields that b € Z(A). H
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4. Proof of Theorem 2. (1) Let A be a non-zero left nilpotent brace of index n. Then
(A" A = {0} and A"' # {0}. This means that A"' C ann; A and, by Lemma 7,
Z(H(A)) #{(0,0)}. Since A" ! is a two-sided ideal in A and

(A/A™ )" = {0},

by induction on n we can prove that H(A) is a nilpotent group. Moreover, Z(A°) <1 A° and
SO

{0} # (A1)° () Z(A°) C ann A,

(2) We have A™ = {0} for some positive integer n and thus
A=Y C ann, A.

But ann, A is a two-sided ideal in A and so (ann, A)° is an abelian normal subgroup of A°.
By induction on n we obtain the result. 0

Example 2. Let (Fy)? be a brace constructed in |5] (see Example 2) with the multiplication
“.” depicted by Table:

| - Jooo 111 100] 011010101001 111 |
000 [ 000 | 000 | 000 | 000 | 000 [ 000 [ 000 | 000
111 | 000 [ 000 [ 000 | 000 | 000 | 000 | 000 | 000
100 | 000 [ 110 [ 000 | 001 | 111 | 110 | 111 | 001
011 || 000 | 110 [ 000 | 001 | 111 | 110 | 111 | 001
010 [ 000 | 110 | 111 | 110 [ 000 | 001 [ 111 | 001
101 | 000 | 110 | 111 | 110 | 000 | 001 | 111 | 001
001 [ 000 | 000 | 111 | 111 | 111 | 111 [ 000 | 000
111 [ 000 | 000 | 111 | 111 | 111 | 111 | 000 | 000

This brace has a series
A > A® =1{000,111,001,100} > A® = {000,111} > AW = {000}

and
A D A* =1{000,111,001,100} = A°.

This means that A is right nilpotent and A is not left nilpotent. Since
111 - 100 = 000 # 110 = 100 - 111,
we conclude that 111 ¢ Z(A) and so A® N Z(A) = {000}. If a = 001, b = 100, then
A° = (a) x (b)

is a dihedral group of order 8. Hence H(A) is a 2-group of order 64 and it is nilpotent. If
H(A) = E x F, then, by Corollary 2, we have Z(H(A)) C E.
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