References
-
Amanov T.I.
Representation and embedding theorems for function spaces
$S^{(r)}_{p,\theta}B(\mathbb{R}_n)$ and $S^{(r)_*}_{p,\theta}B$,
($0\leq x_j\leq 2\pi$; $j=1,\ldots,n$).
Tr. Mat. Inst. Steklova 1965, 77, 5-34. (in Russian)
-
Berezansky Yu.M., Sheftel Z.G., Us G.F.
Functional analysis.
Institute of Matematics of NAS of Ukraine. Vol. 1., Kyiv, 2010.
-
Dũng D., Temlyakov V.N., Ullrich T.
Hyperbolic Cross Approximation.
Birkhäuser, Basel, 2018.
-
Heping W., Yongsheng S.
Approximation of functions in $\widetilde{S_1^{r}L}$, $S_1^{r}H$ by entire functions.
Approx. Theory & its Appl. 1999, 15 (4), 88-93.
doi: 10.1007/BF02848673
-
Lizorkin P.I., Nikol'skii S.M.
Function spaces of mixed smoothness from the decomposition point of view.
Proc. Steklov Inst. Math. 1990, 187, 163 - 184. (translation of Tr. Mat. Inst. Steklova
1989, 187, 143-161. (in Russian))
-
Lizorkin P.I.
Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions.
Tr. Mat. Inst. Steklova 1969, 105, 89-167. (in Russian)
-
Myroniuk V.V., Yanchenko S.Ya.
Approximation of functions from generalized Nikol'skii-Besov classes by entire functions in Lebesgue spaces.
Mat. Stud. 2013, 39 (2), 190-202. (in Ukrainian)
-
Nikol'skii S.M.
Functions with dominant mixed derivative, satisfying a multiple Hölder condition.
Sibirsk. Mat. Zh. 1963, 4 (6), 1342-1364. (in Russian)
-
Pustovoitov N.N.
Approximation of multidimensional functions with a given majorant of mixed moduli of continuity.
Math. Notes 1999, 65 (1), 89-98.
(translation of Mat. Zametki 1999, 65 (1), 107-117.
doi: 10.4213/mzm1032 (in Russian))
doi: 10.1007/BF02675013
-
Pustovoitov N.N.
The representation and approximation of periodic functions of several variables with a given mixed modulus of continuity.
Anal. Math. 1994, 20, 35-48.
doi: 10.1007/BF01908917 (in Russian)
-
Romanyuk A.S.
Approximative Characteristics of the Classes of Periodic Functions of Many Variables.
Proc. of the Institute of Mathematics of the NAS of Ukraine, Kiev, 2012, 93. (in Russian)
-
Stasyuk S.A.
Best approximations and Kolmogorov and trigonometric widths of the classes ${B^{\Omega}_{p,\theta}}$ of periodic functions of many variables.
Ukrainian Math. J. 2004, 56 (11), 1849-1863.
(translation of Ukrain. Mat. Zh. 2004, 56 (11), 1557-1568. (in Ukrainian))
doi: 10.1007/s11253-005-0155-1
-
Stasyuk S.A., Yachenko S.Ya.
Approximation of functions from Nikolskii-Besov type classes of generalized mixed smoothness.
Anal. Math. 2015, 41 (4), 311-334.
doi: 10.1007/s10476-015-0305-0
-
Temlyakov V.N.
Approximation of functions with bounded mixed derivative.
Proc. Steklov Inst. Math. 1989, 178, 1-121.
(translation of Tr. Mat. Inst. Steklova 1986, 178, 1-112. (in Russian))
-
Vladimirov V.S.
Equations of Mathematical Physics.
Nauka, Moscow, 1981. (in Russian)
-
Wang H.
Quadrature formulas for classes of functions with bounded mixed derivative or difference.
Sci. China Math. 1997, 40 (5), 449-458.
doi: 10.1007/BF02896952
-
Wang H., Yongsheng S.
Approximation of multivariate functions with a certain mixed smoothness by entire functions.
Northeast. Math. J. 1995,
11 (4), 454-466.
-
Yanchenko S.Ya.
Approximation of functions from the classes $S^r_{p,\theta}B$ in the uniform metric.
Ukrainian Math. J. 2013, 65 (5), 771-779.
(translation of Ukrain. Mat. Zh. 2010, 62 (8), 698-705 (in Ukrainian))
doi: 10.1007/s11253-013-0813-7
-
Yachenko S.Ya.
Approximations of classes $B^{\Omega}_{p,\theta}$ of functions of many variables by entire functions in the space $L_q(\mathbb{R}^d)$.
Ukrainian Math. J. 2010, 62 (1), 136-150.
(translation of Ukrain. Mat. Zh. 2010, 62 (1), 123-135. (in Ukrainian))
doi: 10.1007/s11253-010-0338-2
-
Yachenko S.Ya.
Approximation of functions from the isotropic Nikol'skii-Besov classes in the uniform and integral metrics.
Ukrainian Math. J. 2016, 67 (10), 1599-1610.
(translation of Ukrain. Mat. Zh. 2015, 67 (10), 1423-1433. (in Ukrainian))
doi: 10.1007/s11253-016-1175-8
-
Yanchenko S.Ya.
Approximation of the classes $S^{r}_{p,\theta}B(\mathbb{R}^d)$ of functions of many variables by entire functions of a special form.
Ukrainian Math. J. 2011, 62 (8), 1307-1325.
(translation of Ukrain. Mat. Zh. 2010, 62 (8), 1124-1138 (in Ukrainian))
doi: 10.1007/s11253-011-0431-1
-
Yachenko S.Ya.
Best approximation of the functions from anisotropic Nikol'skii-Besov classes defined in $\mathbb{R}^d$.
Ukrainian Math. J. 2018, 70 (4), 661-670.
(translation of Ukrain. Mat. Zh. 2018, 70 (4), 574-582. (in Ukrainian))
doi: 10.1007/s11253-018-1523-y
-
Yanchenko S.Ya.
Estimates for approximative characteristics of classes $S^r_{p,\theta}B(\mathbb{R}^d)$ of functions in the uniform metric.
Zb. Pr. Inst. Mat. NAN Ukr.
Collection of Works ``Approximation Theory of Functions and Related Problems'', 2013, 10 (1), 328-340 (in Ukrainian).
-
Yanchenko S.Ya.
Order estimates of approximation characteristics of functions from the anisotropic Nikol'skii-Besov classes.
J. Math. Sci. (N.Y.) 2018, 234 (1), 98-105.
(translation of Ukr. Mat. Visn. 2017, 14 (4), 595-605. (in Ukrainian))
doi: 10.1007/s10958-018-3984-9
-
Yanchenko S.Ya., Radchenko O.Ya.
Approximating characteristics of the Nikol'skii-Besov classes $S^{\boldsymbol{r}}_{1,\theta}B(\mathbb{R}^d)$.
Ukrainian Math. J. 2020, 71 (10), 1608-1626.
(translation of Ukrain. Mat. Zh. 2019, 71 (10), 1405-1421. (in Ukrainian))
doi: 10.1007/s11253-020-01734-9
-
Yongsheng S., Heping W.
Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness.
Proc. Steklov Inst. Math. 1997, 219 (4), 350-371.
(translation of Tr. Mat. Inst. Steklova 1997, 219, 356-377. (in Russian))