References

  1. Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebras of symmetric holomorphic functions on $\ell_p$. Bull. Lond. Math. Soc. 2003, 35, 55-64. doi: 10.1112/S0024609302001431
  2. Aron R., Falcó J., Maestre M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28 (1), 393-404. doi: 10.1007/s12220-017-9825-0
  3. Aron R., Galindo P., Pinasco D., Zalduendo I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48 (5), 779-796. doi: 10.1112/blms/bdw043
  4. Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinburgh Math. Soc. 2012, 55 (1), 125-142. doi: 10.1017/S0013091509001655
  5. Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on $L_\infty$. Proc. Roy. Soc. Edinburgh Sect. A 2017, 147 (4), 743-761. doi: 10.1017/S0308210516000287
  6. Galindo P., Vasylyshyn T., Zagorodnyuk A. Symmetric and finitely symmetric polynomials on the spaces $\ell_\infty$ and $L_\infty[0,+\infty)$. Math. Nachr. 2018, 291 (11-12), 1712-1726. doi: 10.1002/mana.201700314
  7. Galindo P., Vasylyshyn T., Zagorodnyuk A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on $L_\infty$. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM2020, 114 (56). doi: 10.1007/s13398-020-00791-w
  8. González M., Gonzalo R., Jaramillo J. A. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. 1999, 59 (2), 681-697. doi: 10.1112/S0024610799007164
  9. Halushchak S. Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials. Carpathian Math. Publ. 2019, 11 (2), 311-320. doi: 10.15330/cmp.11.2.311-320
  10. Kravtsiv V. Algebraic basis of the algebra of block-symmetric polynomials on $\ell_1\oplus \ell_\infty$. Carpathian Math. Publ. 2019, 11 (1), 89-95. doi: 10.15330/cmp.11.1.89-95
  11. Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On algebraic basis of the algebra of symmetric polynomials on $\ell_p(\mathbb{C}^n)$. J. Funct. Spaces 2017, 2017. doi: 10.1155/2017/4947925
  12. Martin R. S. Contribution to the theory of functionals. Ph.D. thesis, University of California, 1932.
  13. Mitrofanov M. A. Approximation of continuous functions on complex Banach spaces. Math. Notes 2009, 86 (3-4), {530-541}. doi: 10.1134/S0001434609090302
  14. Mujica J. Complex Analysis in Banach Spaces. North Holland, 1986.
  15. Nemirovskii A. S., Semenov S. M. On polynomial approximation of functions on Hilbert space. Math. USSR Sb. 1973, 21 (2), 255-277. doi: 10.1070/SM1973v021n02ABEH002016
  16. Vasylyshyn T.V. Symmetric $*$-polynomials on $\mathbb{C}^n$. Carpathian Math. Publ. 2018, 10 (2), 395-401. doi: 10.15330/cmp.10.2.395-401
  17. Vasylyshyn T. Point-evaluation functionals on algebras of symmetric functions on $(L_\infty)^2$. Carpathian Math. Publ. 2019, 11 (2), 493-501. doi: 10.15330/cmp.11.2.493-501
  18. Vasylyshyn T. Symmetric polynomials on $(L_p)^n$. Eur. J. Math. 2020, 6 (1), 164-178. doi: 10.1007/s40879-018-0268-3
  19. Vasylyshyn T. V. Symmetric polynomials on the Cartesian power of $L_p$ on the semi-axis. Mat. Stud. 2018, 50 (1), 93-104. doi: 10.15330/ms.50.1.93-104
  20. Vasylyshyn T.V. The algebra of symmetric polynomials on $(L_\infty)^n$. Mat. Stud. 2019, 52 (1), 71-85. doi: 10.30970/ms.52.1.71-85
  21. Vasylyshyn T., Zagorodnyuk A. Continuous symmetric 3-homogeneous polynomials on spaces of Lebesgue measurable essentially bounded functions. Methods Funct. Anal. Topology 2018, 24 (4), 381-398.
  22. Vasylyshyn T. V., Zagorodnyuk A. V. Polarization formula for $(p,q)$-polynomials on a complex normed space. Methods Funct. Anal. Topology 2011, 17 (1), 75-83.
  23. Vasylyshyn T. Algebras of entire symmetric functions on spaces of Lebesgue-measurable essentially bounded functions. J. Math. Sci. 2020, 246, 264-276. doi: 10.1007/s10958-020-04736-x