References
-
Alas O.T., Sanchis M.
Countably Compact Paratopological Groups.
Semigroup Forum 2007, 74, 423-438.
doi: 10.1007/s00233-006-0637-y
-
Arhangel'skiǐ A.V., Choban M.M.
On paratopological groups and pseudocompactness.
Preprint.
-
Arhangel'skiǐ A.V., Choban M.M., Kenderov P.S.
Topological games and topologies on groups.
Math. Maced. 2010, 8, 1-19. %Journal abbreviation not found in serials.pdf
-
Arhangel'skiǐ A.V., Reznichenko E.A.
Paratopological and semitopological groups versus topological groups.
Topology Appl. 2005, 151, 107-119.
doi: 10.1016/j.topol.2003.08.035
-
Arhangel'skiǐ A.V., Tkachenko M.
Topological groups and related structures.
Atlantis Press, Paris; World World Sci. Publ., Hackensack, NJ, 2008.
-
Banakh T.O., Ravsky A.V.
The regularity of quotient paratopological groups.
Mat. Stud. 2018, 49 (2), 144-149.
doi: 10.15330/ms.49.2.144-149
-
Banakh T.O., Ravsky A.V.
Each regular paratopological group is completely regular.
Proc. Amer. Math. Soc. 2017, 145 (3), 1373-1382.
doi: 10.1090/proc/13318
-
Banakh T.O., Ravsky A.V.
Feebly compact paratopological groups (version 7).
-arXiv:1003.5343v7
-
Bouziad A.
Every Ćech-analytic Baire semitopological group is a topological group.
Proc. Amer. Math. Soc. 1996, 124 (3), 953-959.
%
doi: not found
-
Brand N.
Another note on the continuity of the inverse.
Arch. Math. (Basel) 1982, 39, 241-245.
doi: 10.1007/BF01899530
-
Dikranjan D.N., Prodanov I.R., Stoyanov L.N.
Topological Groups: Characters Dualities and Minimal Group Topologies, (2nd edn.),
In: Kabayashi S., Hewitt E. (Eds.)
Monographs and Textbooks in Pure and Applied Mathematics, 130, Marcel Dekker, New York 1989.
-
Dorantes-Aldama A., Shakhmatov D.,
Selective sequential pseudocompactness.
Topology Appl. 2017, 222, 53-69.
doi: 10.1016/j.topol.2017.02.016
-
van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.
Star covering properties.
Topology Appl. 1991, 39 (1), 71-103.
doi: 10.1016/0166-8641(91)90077-Y
-
Ellis R.
Locally compact transformation groups.
Duke Math. J. 1957, 24, 119-125.
doi: 10.1215/S0012-7094-57-02417-1
-
Ellis R.
A note on the continuity of the inverse.
Proc. Amer. Math. Soc. 1957, 8, 372-373.
doi: 10.1090/S0002-9939-1957-0083681-9
-
Engelking R.
General topology.
Heldermann, Berlin, 1989.
-
Gutik O.V., Ravsky A.V.
On old and new classes of feebly compact spaces.
Visnyk of the Lviv Univ. Ser. Mech. Math. 2018, 85, 48-59.
doi: 10.30970/vmm.2018.85.048-059
-
Katĕtov M.
On H-closed extensions of topological spaces.
Ćasopis Pést. Mat. Fys. 1947, 72, 17-32.
-
Kenderov P.S., Kortezov I.S., Moors W.B.
Topological games and topological groups.
Topology Appl. 2001, 109, 157-165.
doi: 10.1016/S0166-8641(99)00152-2
-
Korovin A.
Continuous actions of Abelian groups and topological properties in $C_p$-theory.
Ph.D. Thesis, Moscow State University, Moscow, 1990. (in Russian)
-
Korovin A.
Continuous actions of pseudocompact groups and the topological group axioms.
Deposited in VINITI 1990, #3734-D, Moscow. (in Russian)
-
Li P., Tu J.-J., Xie L.-H.
Notes on (regular) $T_3$-reflections in the category of semitopological groups.
Topology Appl. 2014, 178, 46-55.
doi: 10.1016/j.topol.2014.09.001
-
Lipparini P.
A very general covering property.
-arXiv:1105.4342
-
Lawson J.D.
Joint continuity in semitopological semigroups.
Illinois J. Math. 1974, 18 (2), 275-285.
-
Matveev M.
A survey on star covering properties.
Topology Atlas. Preprint #330.
http://at.yorku.ca/v/a/a/a/19.htm
-
Montgomery D.
Continuity in topological groups.
Bull. Amer. Math. Soc. 1936, 42, 879-882.
doi: 10.1090/S0002-9904-1936-06456-6
-
Moors W.B.
Some Baire semitopological groups that are topological groups.
Topology Appl. 2017, 230, 381-392.
doi: 10.1016/j.topol.2017.08.042
-
Pfister H.
Continuity of the inverse.
Proc. Amer. Math. Soc 1985, 95, 312-314.
doi: 10.1090/S0002-9939-1985-0801345-5
-
Pontrjagin L.S.
Continuous groups.
Nauka, Moscow, 1973. (in Russian)
-
Ravsky A.V.
Paratopological groups I.
Mat. Stud. 2001, 16 (1), 37-48.
-
Ravsky A.V.
Paratopological groups II.
Mat. Stud. 2002, 17 (1), 93-101.
-
Ravsky A.V.
The topological and algebraical properties of paratopological groups.
Ph.D. Thesis Lviv University, Lviv, 2002. (in Ukrainian)
-
Ravsky A.V.
Post #209491 at MathOverflow.
-
Ravsky A.V., Reznichenko E.A.
The continuity of inverse in groups.
In: Zagorodnuyk A.V., Hryniv R.O.
Book of Abstracts of International Conference on Functional Analysis and
its Applications Dedicated to the 110th anniversary of Stefan Banach, Lviv, Ukraine, May 28-31, 2002,
Publ. Cent. of Ivan Franko National University of Lviv, Lviv, 2002, 170-172.
-
Reznichenko E.A.
Extension of functions defined on products of pseudocompact spaces and continuity of the
inverse in pseudocompact groups.
Topology Appl. 1994, 59, 33-44.
doi: 10.1016/0166-8641(94)90021-3
-
Reznichenko E.A.
Čech complete semitopological group are topological groups.
(Preprint).
-
Stephenson Jr. R.M.
Initially $\kappa$-compact and related compact spaces.
In K. Kunen, J. E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V.,
Amsterdam, 1984, 603-632.
doi: 10.1016/B978-0-444-86580-9.50016-1
-
Stone M.H.
Applications of the theory of Boolean rings to general topology.
Trans. Amer. Math. Soc. 1937, 41, 375-481.
doi: 10.1090/S0002-9947-1937-1501905-7
-
Seminar "Topology $\&$ its Applications" at Chair of Geometry and Topology,
Mechanics and Mathematics Faculty, Ivan Franko National University of Lviv. 28 November 2016. Not published.
-
Tkachenko M.
Semitopological and paratopological groups vs topological groups.
In: Hart K.P., van Mill J., Simon P. (Eds.),
Recent Progress in General Topology III,
Springer Science $\&$ Business Media, 2013, 803-859.
-
Tkachenko M.
Axioms of separation in semitopological groups and related functors.
Topology Appl. 2014, 161, 364-376.
doi: 10.1016/j.topol.2013.10.037
-
Vaughan J.E.
Countably compact and sequentially compact spaces.
In K. Kunen, J. E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V.,
Amsterdam, 1984, 569-602.
doi: 10.1016/B978-0-444-86580-9.50015-X
-
Wallace A.D.
The structure of topological semigroups.
Bull. Amer. Math. Soc. 61 (1955), 95-112.