References

  1. Bari N.K., Stechkin S.B. The best approximations and differential properties of two conjugate functions. Trans. Moscow Math. Soc. 1956, 5, 483-522. (in Russian)
  2. Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of many variables with given majorant of mixed continuity moduli in the space $L_{\infty}$. J. Math. Sci. (N.Y.) 2018, 231 (1), 28-40. doi: 10.1007/s10958-018-3803-3 (translation of Ukr. Mat. Visn. 2017, 14 (3), 345-360. (in Ukrainian))
  3. Jackson D. Certain problem of closest approximation. Bull. Amer. Math. Soc. 1933, 39, 889-906.
  4. Konograi A.F. Estimates of the approximation characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables with given majorant of mixed moduli of continuity. Math. Notes 2014, 95 (5), 656-189. doi: 10.1134/S0001434614050095 (translation of Mat. Zametki 2014, 95 (5), 734-749. doi: 10.4213/mzm10118 (in Russian))
  5. Konograi A. F., Fedunyk-Yaremchuk O. V. Estimates of approximation characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables with a given majorant of the mixed moduli of continuity . Approx. Theory of Functions and Related Problems: Proc. Inst. Math. NAS Ukr. 2013, 10 (1), 148-160. (in Ukrainian)
  6. Konograi A. F., Fedunyk-Yaremchuk O. V. Estimates of orthoprojection widths of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables with given majorant of mixed moduli of continuity. Approx. Theory of Functions and Related Problems: Proc. Inst. Math. NAS Ukr. 2014, 11 (3), 143-165. (in Ukrainian)
  7. Konograi A.F., Fedunyk-Yaremchuk O.V. Estimates of orthogonal widths of the classes $B^{\Omega}_{\infty,\theta}$ of periodic functions of many variables with given majorant of mixed moduli of continuity. Approx. Theory of Functions and Related Problems: Proc. Inst. Math. NAS Ukr. 2015, 12 (4), 205-215. (in Ukrainian)
  8. Lizorkin P. I., Nikol'skii S. M. Spaces of functions with mixed smoothness from the decomposition point of view. Proc. Steklov Inst. Math. 1990, 187, 163-184. (translation of Tr. Mat. Inst. Steklova 1989, 187, 143-161. (in Russian))
  9. Nikol'skii S.M. Approximation of Functions of Several Variables and Embedding Theorems. Nauka, Moscow, 1969. (in Russian)
  10. Nikol'skii S.M. Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of severaly variables. Tr. Mat. Inst. Steklova 1951, 38, 244-278. (in Russian)
  11. Pustovoitov N.N. Approximation of multidimensional functions with a given majorant of mixed moduli of continuity. Math. Notes 1999, 65 (1), 89-98. doi: 10.1007/BF02675013 (translation of Mat. Zametki 1999, 65 (1), 107-117. doi: 10.4213/mzm1032 (in Russian))
  12. Pustovoitov N. N. On the approximation and characterization of periodic functions of many variables, whose majorant of mixed continuity moduli has a special form. Anal. Math. 2003, 29, 201-218. doi: 10.1023/A:1025415204826 (in Russian)
  13. Pustovoitov N.N. Representation and approximation of periodic functions of several variables with given mixed modulus of continuity. Anal. Math. 1994, 20, 35-48. doi: 10.1007/BF01908917 (in Russian)
  14. Pustovoitov N.N. The orthowidths of classes of multidimensional periodic functions, for which the majorant of mixed continuity moduli contains power and logarithmic multipliers. Anal. Math. 2008, 34, 187-224. doi: 10.1007/s10476-008-0303-6 (in Russian)
  15. Romanyuk A.S. Approximation of classes of periodic functions of several variables. Ukrainian Math. J. 1992, 44 (5), 596-606. doi: 10.1007/BF01056698 (translation of Ukrainian Math. J. 1992, 44 (5), 662-672. (in Russian))
  16. Romanyuk A.S. Best approximations and widths of classes of periodic functions of several variables. Sb. Math. 2008, 199 (2), 253-275. doi: 10.1070/SM2008v199n02ABEH003918 (translation of Mat. Sb. 2008, 199 (2), 93-114. doi: 10.4213/sm3685 (in Russian))
  17. Romanyuk A. S. Diameters and best approximation of the classes $B^r_{p,\theta}$ of periodic functions of several variables. Anal. Math. 2011, 37, 181-213. doi: 10.1007/s10476-011-0303-9 (in Russian)
  18. Stasyuk S. A., Fedunyk O. V. Approximation characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of many variables. Ukrainian Math. J. 2006, 58 (5), 779-793. doi: 10.1007/s11253-006-0101-x (translation of Ukrainian Math. J. 2006, 58 (5), 692-704. (in Ukrainian))
  19. Stasyuk S. A. Approximation by Fourier sums and the Kolmogorov widths for the classes $MB^{\Omega}_{p,\theta}$ of periodic functions of several variables. Tr. Inst. Mat. Mekh. 2014, 20 (1), 247-257. (in Russian)
  20. Stasyuk S. A. Best approximations of periodic functions of several variables from the classes $B^{\Omega}_{p,\theta}$. Math. Notes 2010, 87 (1-2), 102-114. doi: 10.1134/S000143461001013X (translation of Mat. Zametki 2010, 87 (1), 108-121. doi: 10.4213/mzm4053 (in Russian))
  21. Yongsheng S., Heping W. Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness. Tr. Mat. Inst. Steklova 1997, 219, 356-377.
  22. Temlyakov V.N. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math. 1989, 178, 1-121. (translation of Tr. Mat. Inst. Steklova 1986, 178, 3-113. (in Russian))
  23. Temlyakov V. N., Diameters of some classes of functions of several variables. Dokl. Akad. Nauk 1982, 267 (2), 314-317. (in Russian)
  24. Temlyakov V. N. Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference. Proc. Steklov Inst. Math. 1990, 189, 161-197. (translation of Tr. Mat. Inst. Steklova 1989, 189, 138-168. (in Russian))