References
-
Agarwal R. P., O'Regan D., Sahu D.R. Fixed point
theory for Lipschitzian-type mappings with applications, Springer, New York, 2009.
-
Altun I., Sola F., Simsek H. Generalized contractions
on partial metric spaces. Topology Appl. 2010, 157, 2778-2785.
-
Berinde V. Iterative approximation of fixed points, Springer, Berlin, 2007.
-
Ćirić L.J. Fixed point theory contraction mapping principle, Faculty of Mechanical Enginearing, Beograd, 2003.
-
Czerwik S. Nonlinear set-valued contraction mappings in $b$-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46 (2), 263-276.
-
Granas A., Dugundji J. Fixed Point Theory, Springer, Berlin, 2010.
-
Lakshmikantham V., Ćirić L.J. Coupled fixed
point theorems for nonlinear contractions in partially ordered metric
spaces. Nonlin. Anal. 2009, 70 (12), 4341-4349.
-
Miheţ D. A Banach contraction theorem in fuzzy metric
spaces. Fuzzy Sets and Systems 2004, 144 (3), 431-439.
-
Rao K.P.R., Kishore G.V.N. Common fixed point theorems
in ultra metric spaces. Punjab Univ. J. Math. 2008, 40,
31-35.
-
Sedghi S., Altun I., Shobe N. Some properties of $T$
-metric spaces and a common fixed point theorem. Fasc. Math. 2012, 48, 105-118.
-
Sedghi S., Shobe N., Rao K.P.R., Prasad J.R.
Extensions of fixed point theorems with respect to $w$-$T$-distance.
Int. J. Adv. Sci. Tech. 2011, 2 (6),
100-107.
-
Turkoglu D. Fixed point theorems on uniform spaces.
Indian J. Pure Appl. Math. 2003, 34 (3), 453-459.