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BARANETSKI] YA.O.1, IvasIiUK 1.YA.Z, KALENYUK P.I.1, SOLOMKO A.V.2

THE NONLOCAL BOUNDARY PROBLEM WITH PERTURBATIONS OF
ANTIPERIODICITY CONDITIONS FOR THE ELLIPTIC EQUATION WITH
CONSTANT COEFFICIENTS

In this article, we investigate a problem with nonlocal boundary conditions which are perturba-
tions of antiperiodical conditions in bounded m-dimensional parallelepiped using Fourier method.
We describe properties of a transformation operator R : Ly(G) — Lp(G), which gives us a connec-
tion between selfadjoint operator Ly of the problem with antiperiodical conditions and operator L
of perturbation of the nonlocal problem RLy = LR.

Also we construct a commutative group of transformation operators I'(Ly). We show that some
abstract nonlocal problem corresponds to any transformation operator R € T'(Lg) : L»(G) — La(G)
and vice versa. We construct a system V(L) of root functions of operator L, which consists of infinite
number of adjoint functions. Also we define conditions under which the system V(L) is total and
minimal in the space L,(G), and conditions under which it is a Riesz basis in the space L,(G).

In case if V(L) is a Riesz basis in the space L, (G), we obtain sufficient conditions under which
the nonlocal problem has a unique solution in the form of Fourier series by system V(L).
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1 INTRODUCTION

Investigation of ordinary differential equations with nonlocal integral conditions begins in
works of H. Birkoff, A. Zommerfeld, J. Stone, Ya.D. Tamarkin, W. Feller. Fundamental role in
development of nonlocal problems and shift operator theory play works of T. Carleman. The
general theory of elliptic boundary problems was formed due to investigations of Y.G. Beid
and R.S. Friman, R. Bills, F. Brauder, L. Ehrenpreis, L. Hermander, G. Grub, J.W. Kalkin,
Ya.B. Lopatynskiy, M. Malgrange, 1.V. Skrypnyk, M. Shekhter, M.I. Vishyk. Nonlocal bound-
ary problems for linear differential equations with partial derivatives in different aspects were
investigated by Yu.M. Berezanskiy, A.V. Bitsadze, V.M. Borok, M.L. Gorbachuk, O.O. Dezin,
Yu.M. Dybinskiy, M.I. Ionkin, V.S. Ilkiv, PI. Kalenuyk, A.H. Mamyan, V.A. Mykhailets,
B.Yo. Ptashnyk, V.K. Romanko, O.A. Samarskiy, O.L. Skubatchevkiy, S.Ya. Yakubov. Non-
local elliptic problems were studied in works of A.V. Bitsadze, O.O. Dezin, A.I. Kamynin,
S.A. Paneyakha, Ya.A. Roytberg and Z.G. Sheftel, A.A. Samarskiy, L.A. Skybatchevkiy and
their followers.
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This paper is denoted to research of nonlocal problems for equations with constant coef-
ficients. The classes of uniqueness and existence of the solution of boundary value problems
in unbounded domains (half-space, unbounded strip) for equations with constant coefficients
were studied in [7,8,11,12,17,22-26].

Boundary value problems in bounded domains for certain classes of differential equations
with constant coefficients have been studied in [1,9, 10, 13-16, 18, 20, 21, 27,28]. The work is a
continuation of the studies begun in [2-6].

Letusdenote Zy:={k:k >0, ke Z}, B= (B1,B2,---,Bm) €EZJ, |Bl =B1+ ...+ Bm,

Gi={x=(xy,x2...,0m) ER":0<x; < X;<00,j=1,2,...,m},
Gri={x"=(x1,..., %1, X41,---,Xm) € R"1:0< X< Xj<oo,jFET,j= 1,2,...,m}.

Let D; be the operator of differentiation by variable x;. Denote D% .= D%ﬁ ! D%’s 2. ....Dam,
W3"(G) = {y € L2(G) : Dy € Lo(G), || = n},

m

m
(v, W5"(G)) ==} (D}"y, D}"z; La(G)), [y W3"(G)? := }_(D;"y, D}"y; La(G)).

j=1 j=1

Also we will use the following notations. Let E; be the identical transformation in the space
L»(0, X;); E be the identical transformation in the space L>(G); I; be an operator of involution
in the space L»(0, X;), liz(x) := z(X; — x),z(x) € L2(0,X;); pj be an orthoprojector in the
space L»(0, X;); pjz(x) := T(z(x) + (=1)/z(X; — x)),z(x) € La(0,X;); L2 (0,Xj) := {z(xj) €
L(0,X;) : z(xj) == prz(x)}, r = 0,1; W3, (0, X;) be the space of linear continuous functionals
on W3(0,X;); Wy, (0, X;) := {I € Wy, (0,X;) : I(e"* — (—=1)%e"%7D) =0, h € R, x; €
(O,X]-)}, s =0,1,Qu:=1{Q = (q1,92,---,qm) € Z",q9, € {0,1}, r = 1,2,...,m}; p; :=
m

[T pg, be an orthoprojector in the space L, (G) ; Ly,o(G) := {y € La(G) : y := poy}-
r=1
Let us consider boundary problem

LDy := Y (-1)PlagD*y=f, x€gG, (1)
|Bl<n
lsjy = DP* 2ylymo+ DF Pylyox, =0, j=1,2,...,m, )
En_i_s,]‘y = D?Sily‘x]‘:O + D]2571y’x]4:xj + 151,]y = Or ] = 1/ 2! ce.,m, (3)
where
1 L q
gs,jy = Zé) Zobq,r,s,jD]‘ Yxj=rX;s 4)
r=0g=

bq,r,s,j €R, ¢g=01,...,mg;, r=0,15=12,...,n, j=12,...,m.
Let us denote by L : Ly(G) — Ly(G) the operator of problem (1)-(4), Ly := L(D)y,
y€D(L),D(L) :=={y e W3"(G) : £,y =0,5=1,2,...,2n, j=1,2,...,m}.

Definition 1. We will denote by function y € D(L) a solution of the problem (1)<4) that
satisfies |Ly — f; L(G)|| = 0.
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2 GENERAL RESULTS

Let us consider the following assumptions

Py:bgas = (=1)Tbg0.s,j

b msj < 2s—1, s=1,2,...,n;

Py: Al > Cilk[*" >0, 0 < Cp < o0, k € N,
Py:p;Xi+ppXo+ ... = puXm #0, pieZ, j=12,...,m

Theorem 1. Let Py holds. Then for arbitrary numbers ag € R, |B| < n, the operator L has
eigenvalues

M=), ﬂ/ﬁHPk] (5)

Bl<n =1

Pkj = (Zk]- — 1)7‘(X]._1,j =1,2,...,mk=(ky, ky, ..., km) € N™, and a complete and minimal
system V(L) of root functions exists in the space L(G).

Theorem 2. Let P;—P, hold. Then the operator L has a system V (L) of root functions, which is
a Riesz basis for the space Ly(G).

Theorem 3. Let the assumptions P;-P; take place. Then for any function f € L,(G) there exists
a unique solution of the problem (1)—(4).

3 SELF-ADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS OF EVEN ORDER

Let us denote by A ; the operator generated in L; (0, X;j) by the next boundary problem
—2(2)(x]-) = g(x]-), xj € (0,X;),z(0) +z(X;) =0, z(0) + z(l)(X]-) =0,j=12...,m

Aojy(xj) = —y@ (%)), y € D(4o;) and D(4Ag,) := {y € W3(0,X)) : y0) +y\(X;) =
0,r=0,1}, le (xj) == \/Z_chospk,]-xj, ki=12,..., Tolk],(x]-) = \/T_stinpk,]-x]-, ki=12,...,
T = {Tr,kj(x]) € L»(0,Xj),r = 0,1,k = 1,2,...} is an orthonormal basis of the space

Lz(O,Xj), j: 1,2,...,m.

Lemma 1. The operator Ay has the point spectrum

O'(AO,]‘> = {]/lk,j eER: Hij = p%,j, k=1,2,.. }
and a system of eigenfunctions T;. Sets Ly 5(0, Xj) are invariant for the operator AO,]-, s=0,1.

Proof. By substitution we obtain that 7, (x;) € D(Ao;) and Ag;Tx(xj) = pTri; (%)), 1 =
0,1,k=1,2,....

Therefore operator Ay has a system of eigenfunctions T;, which corresponds to the set of
eigenvalues ¢ (A) .

Let us notice that subset of eigenfunctions Tj, := {Tr,kj(x]-) € 12(0,X;), k=1,2,...}, Ay is
an orthonormal basis in the space L, (0, X]-), r=0,1. O

Let us consider for equation (1) the following problem with boundary conditions

losjy = DF 2 yly o+ DF 2 ylyx, =0, s =12, j=12,...,m, 6)
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Conrsy = Djzs—l Yo+ Dfs—l Yemx, =0 5=212..,n,j=12,.,m (7)

Let Lo : W3"(G) — W2"(G) be the operator of problem (1), (6), (7). Also we denote by Loy :=
L(D)y,y € D(Lo); D(Lo) := {y € W3"(G) : Losjy = 0,5 = 1,2,...,2n,j = 1,2,...,m};

m
V(Lo) := {vo,x(x) € La(G) : vy, p(x) := lerj,k].(x]-), rp€{0,1}, j=1,2,...,m k € N"}
]:

the orthonormal basis of the space L(G); Ly o the restriction of the operator Ly to the space
L, o(G) and

m
VQ = {Uolqlk(x) € Lz(G) : Uolk(x) = Hrq].,]-(x]-), k] = 2k] —jr, ke Nm}, Q € Qm~
j=1

Lemma 2. The operator L has eigenvalues (5) and a system of eigenfunctions V(Ly).

Proof. By a substitution it is easy to check that vy, x(x) € D(Lo), Lovg,k(x) = Agvo,r(x),
k€ IN™.

Therefore, the operator Ly has a system of eigenfunctions V(L) which corresponds to the
set of eigenvalues o (Ly) := {A € R, k € N"}. O

4 NONSELFADJOINT PROBLEM OF ORDINARY DIFFERENTIAL EQUATION OF THE SECOND
ORDER

Let us consider the following spectral boundary problem
— 2(2)(xj) = pz(xj), xj € {0, X]-}, nec, (8)
2(0) +z(X;) = 0, z1(0) + 2V (X;) + b(z(1)(0) — z(1)(X;)) = 0. 9)

Let B; = B, be the operator of problem (8), (9). Solutions +p of the characteristic equation
—p? = A are such that Rey < 0.
We define the fundamental system of solutions of the equation (8) by equations
zr(xj,0) := expox; + (—1)" exp1p(X; — x;) € L2,(0,X;), r=0,1.

The general solution of equation (8) can be represented as the sum

z (xj,p) := cozo (xj,0) + c121 (¥}, p0) -

If we substitute this solution into boundary conditions (9), we obtain an equation which roots
define eigenvalues of the operator B;

Ap) = Bo(p)Ai(p) =0, (10)

where Ag(p) = (1+ exp1pX;), A1(p) = 1p(1 + exp1pX;).
Equation (10) has two-fold roots 0k 0k, = (2k — 1)7'L'Xj_1, k = 1,2,.... Therefore the
operator B; has two-fold eigenvalues py ; = ((2k; — 1)7TX].’1)2, ki=1,2,....Since Ty _1,(x) €

D(B)) and Bjtox—1,j(Xj) = pok—1,Tk-1,(xj), kj = 1,2,..., we define eigenfunction of the
operator B; by the formula

2
o1k (xj, Bj) = TX] cos ppixj, k=1,2,....
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We define an adjoint function of the operator B; by the following relation
vok(xj, Bj) = (1+¢j(2x; — X]))\/%Tj sin py.xj, ¢j € C.

If we substitute this expression to boundary condition (9) we define ¢; = b.
So the operator B; has an adjoint function

2 .
vok(xj, Bj) = (14 b(2x; — X]»\/TT] sin Py ;. (11)

Root functions of the operator B; are defined by equations
Bjvok(xj, Bj) = px, 0ok (xj, Bj) + Cx,jv1k(xj, Bj), Ckj = 4bpxj, ki =1,2,. (12)
Bjupk—1(xj, AB;j) = px juor—1(xj, Bj), k=1,2,. (13)

Since the boundary conditions (9) are regular by Birkhoff, from Shkalikov’s theorem [29] we
obtain: the system V(B;) is total and minimal in the space L, (0, X;) forallb € R,j = 1,2,.

Let us prove that V (B;) is a Bessel system. Summands in the formula (11) are orthogonal
in the space L,(0, X;). Therefore for any function i € L>(0, X;) we have

| (1, 00, (%7, By); L2 (0, Xj) > < (1+ 2[b[* X)) || (B, Tk (%7); L2(0, X;) %,
|(h, 01 (x;, Bj; L2(0, X])fz = [ (B, Ta—1(x7); L2(0, X)) >,

If we consider the sum for k = 1,2,..., we have inequality

Z Z |(h, 0,1 (xj, Bj); L2(0, X)) |* < Col; L2 (0, X;) 2, Co = 1+ 2[b]?X;.
r=0k=
Therefore V(B;) is the Bessel system [19] in the space L, (0, X;).
Analogously we can prove that the biorthogonal system Wthh consists of root functions of
adjoint problem

—2®) (%)) = 7iz(xj), z1(0) + 2V (X;) = 0, 2(0) + 2(X;) + b(2(0) — z(X;)) = 0

is Bessel system in the space L,(0, X;). Therefore if we apply Bari’s theorem [19] we obtain the
following lemma.

Lemma 3. For any fixed b; € R spectra of operators B;j, Ag; coincide and system of functions
V(B;) forms a Riesz basis in the space L»(0,X;), j = 1,2,...,m

5 TRANSFORMATION OPERATORS OF ORDINARY DIFFERENTIAL EQUATION OF SECOND
ORDER

Let us consider any sequence of real numbers {Bkj},i‘;zl and consider in the space L, (0, X;)
operator Ay ;. An eigenvalues of this operator coinside with eigenvalues of the operator A,
and root functions can be defined by equations

vl,k,]-(x]-, Al,j) = COs Pk]X X (14)

2
V2%,

Vo k,(%j, A1j) = (1+ 6, (2x; — 1)) sinpk,]-X]-’lxj, ki=12,.... (15)

2
V2%
Let R (A1) = Ej+ S (Aj;) be the operator which acts by rule V(Ag;) — V(A1;). From
definition of the operator R(A; ;) we obtain: S*(A; ;) = 0. Therefore R™1(A ;) = E; — S(Ay))
exists.
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Lemma 4. For any sequence {Bkj},‘:;’:l C R the system of functions V (Al,j) are total and min-
imal in the space L, (0, X;).
Proof. Let us suppose that function & = hg + hy, hy € L3,(0, X;) exists and is orthogonal to all
elements of the system V(A ). Since functions (14) are elements of orthnormal basis of the
space Ly1(0, X;), we obtain iy = 0 So h = hy € Lo(0, X;).

Since function / is orthogonal to elements of the system V(A ), we have:

(h, ’(JO,k(x]', Al,]'); Lz(o, X])) = (ho, TO,k,j(xj); LZ(O, X])) = 0, k= 1, 2,. e

The system Tjo = {Tox,(x;) € L2(0,X;), k = 1,2,...} is an orthonormal basis in the space
L20(0, X;). So we obtain that hi; = 0.
Therefore h = 0. O

Lemma 5. The system of functions V(A ) is a Riesz basis in the space L, (0, X;) if and only if
the sequence {6y}, is bounded.

Proof. Necessity. If the system of functions V (Al,]-) is a Riesz basis in the space L>(0, X;), then
it is almost normalized.
If we take into consideration (14), (15), we have inequality

0 <1< [loog(xj, A1j); L2(0, X)) |I> = 1+ |64 < C3 < 00, C3:= 1+ max6;.
Sufficiency. If we take into consideration formulas (12), (13) then for any functions 1 € L»(0, X;)

we have inequality

co 1

Y Y I(RCAT B, ok (x7); L2(0, X1
k}.:l s=0

co 1
Z Z | (B, 03k, (%), Avj); La(0, X)) < G|l La (0, X)) ||

Therefore the operator R(Ai]-) is adjoint to R(A1;) and bounded in the space L,(0, X;) —
L>(0, X;). So operators R(A1j), R™!(A; ;) = 2E — R(A;,j) are also bounded.

If we take into consideration Lemma 4 and Bari’s theorem [19] we get: the system of func-
tion V(A1) is a Riesz basis in the space L»(0, X;). O

6 NONSELFADJOINT PROBLEM FOR ORDINARY DIFFERENTIAL EQUATION OF EVEN ORDER

Let us consider forany j € {1,2,...,m}, p€ {1,2,...,n},b € R, the problem

L(D)y:= ), aﬁDzﬁy =Ay, AL eC, (16)
|Bl<n

C1sqY = D§5_2y|xq:0 + D§5_2y|xqzxq =0,q#js=1...,n,g=1,...,m, (17)

El,n+5,qy = ngly‘xq:() + ngly‘xqzxq =0,s#pq#jq=1....ms=1,...,n  (18)

Onis iy = DP 2Ylym0 + DF 2Ylyox; =0, s £ ps = 1,201, (19)

Onssy = D Mylx=o + DF 'yly=x, = 0, (20)

2p—1 2p—1 2p—1 2p—1
El,n+p,j]/ = D]'p ]/|xj:0 + Djp y|x]-:Xj + b(Djp ]/|xj:0 - Djp y|x]-:Xj) =0. (21)
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Let L1, ; be an operator of the problem (16) — (21), V (Ly,,;) be the system of root functions
of operator Ly, ;. This operator acts in a following manner Ly , iy := L(D)y, y € D(Ly,,),
D(Lyj) := {y e WZ(G) : bl jy=0,r=1,2,...,2n, j=1,2,...,m}.

Let us consider by fixing k(j) := (ki,ko,..., ki1, kjit1,... k) € IN"~1 solutions of the
problem (16) — (21) in a form of product

m
y(x ) TT tr(xe) ke=1,2,...,j#rr=12,...,m (22)
r:lr#]

For determination of an unknown function z(x;) we have the following problem

Y as(-1F ] (~)p 20 (x)) = Az(x)), A €€, (23)
|Bl<n r=1 77&]
Oz =25 o+ 23 x =0,5=1,2,...,n, (24)
O pys 2 = z(zsfl)]xj:o + Z(Zsfl)]xj:xj =0,s#ps=12,...,n, (25)
Unypjz = z2~1) |xj=0 + 2(2p=1) |xj=x; + b(z?P~D |xj=0 — z2r—1) |xj=x;) = 0. (26)

Let Ly ;) be the operator of the broblem (23) — (26). The operator LO,(kj) is partial case of
operator Ly x(;), ifb = 0.
So

m
L1 k() = Y ag(=1)F [T (pks)*:z%(x)), z € D(Lyx(j)),
|B|<n s=1,5#j

D(Ly ) :={y € W3"(0, X)) : 1,5z =0,5s =1,2,...,2n}.

Lemma 6. Foranyag € R, |B| < n, k(j) € Z§" ', p € {1,2,...,n}, b € R, the operator
Ly x(j) has eigenvalues (5) and a system of root functions V(L K(j )), which is a Riesz basis in
the space L, (0, X;).

Proof. The root w,(k(j), ) of the equation

m

Y ap T (ps)Pre?i =2, 27)

Blsn  s=ls#j

which is characteristic for the equation (23), we will chose from the condition Re wy (k(j), A) <
Rew,_1(k(j),A) < ... <Rewi(k(j),A) <O0.
Let us consider functions

20,1 (X]', )L) = (ZX] - X]) sinwl (k(j),A)X]-_lx]-,

204(xj,A) = 1(1 — e@ak(DAXj) =1 g (k(G)ANY o pwg(K(DMXG=%)) e [, (0, X;), =21,

2 . _
Z0,n+1 (X]', A) = (2X] - X])) \/ﬁ COos wq (k(]),)\)X] 1xj/
]

Z0n4(xj, A) 1= %(1 + ek A)X) =1 (p0q (k) A)Xj _ p0q(k(DAXj=2) ) Lr1(0,X;), g =2,n.
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If we substitute this expressions in boundary conditions (24) — (26), we will get eigenvalues (5)
and eigenfunctions of the operator Ly y(;)

Cospk,]-X]-’lxj, ki=12,.... (28)

2
2X;

01k (%), L1 k(i) =

Let wy(k;j, )\k) are roots of the equation (27), A = Ay obtained from the equation wy(kj, Ax) =
1 (2k; — 1) land Re wn(kj, Ax) < Rewy,1(kj, Ax) < ... <Rews(kj, Ap) <0.
Let us con31der system of functions
201 (33 K Ay) = (235 — X,

2

wq,ijka)_l ( (ewak

sinpy; X %y, ki =1,2,..., (29)

20,4(xj, kj, Ak) = %(He 1A% _ gty MIGT9Ny e 10 (30)

and a square matrix of the order n, which elements we can define as follows: p-th row defined
by functions (29), (30) and elements of other rows defined by numbers

Narki = (pk,j)l_zrgl,n+r,jzl q( jr k]/)‘k) (w (k M) X )Zr !

Mk = (=1)"4 [2X;, ki=1,2,...,q=2,...,n, r#p,r=12,...,n
Determinant of obtained matrix we will denote by Yipk (x]-, Ak), ki=12,...
Remark 1. For any fixed k(j) € N"~1, ifk; — oo, we get

81k (Ar) = wi(kj, Ag) 27tk X1 ™ =1,
Sgx; (M) = wa(kj, M) 27k X ™H = g X;(1+O(k; 1)),

]

where ¢, are roots of the equation (=1)"(e)* =1, Ime; <0, g=2,3,...,n
If we substitute function Y1pk; (x]-, Ag) in boundary conditions (23) — (26), we will get equal-
ities

el,s,jyl,p,kj = 0, ] # n-+ p, k] = 1, 2, ey (31)
n

Cp,kj = gl,n+p,jy1,p,kj = 2X; pk Wk ()Lk) H 5q,kj(Ak)/ k] = 1, 2, ey (32)
q=1

where Wi (Ax) is a Wandermond determinant of the order n, which is constructed by numbers

~1,0,,(A)? 9=2,3,...,mn

Remark 2. For any fixed k(j) € N"~! number sequence Wi;n(Ax) converges to Wandermond

determinant W(e%, .82, if kj — oo, which is constructed using numbers e%, el

Under this conditions sequence 5q,k,~ (Ax) convergestoe;, q=1,2,...,n.

Then there exist positive numbers Cy, Cs such that following inequality takes place:
0< Cy < lepyl 0y, " < Cs < oo kj=12,.... (33)

Let us choose function y, , k; (xj, Ax) so that the equality

1
Cnrpyo,p(xj, ki, Ax) = (\/ZX) Pip ! (34)
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takes place. An adjoint function Vo k; (xj, Ll,(k].) of the operator Ll,(kj) we define by sum

2 1
v(),kj (X]', Ll,(kj)) = ﬁ Sll’l(2k]' — 1)7'CX] X]' + Wl,p,j,kyZ,p,kj (X]', Ak)/ k] = 1, 2, e (35)
To define unknown parameters 7, jx We substitute expression (35) in boundary conditions
(25), (26). If we consider formula (34), we obtain

Mpjk = (=1Pb, kj=1,2,.... (36)

Remark 3. Functions 1, (xj, At) and ya,p k;(xj, Ax) connected with notions

Yo,piei (%, Ak) = Xp,jk¥1,p.k; (Xjs k), (37)
where Cg < ])(p,]-,k\ <Czp=12...,nj=12,...,mkeNN"

Therefore operator Ll,(kj) has a system V(Lll(k],)) of root functions (29), (35), (36) in sense of
equations

Ly, k)00, (%), L, k)) = Arvo; (X, L i) + Spi 01k, (X5 L ;)
—2n  OA
— q=2n k. , — - m
ép,kj = det(nq’r’kj)rzl,_n,r;épap].,kXp’]’knlfp']'kcp’kj’ p=12,...,nj=12,...,mkeIN".

For problem (21) — (26) there exists an adjoint problem which has a system of root functions
that is biorthogonal to V(Ll,(kj)>~ Therefore the system V(Ll,(kj)) is total and minimal in the
space L, (0, X;).

Let Hp,(k].) be a root subspace of the operator V(Ll,(kj)) which corresponds to two-fold
eigenvalue A;. According to the Shkalikov theorem [29] the system of subspaces { H p.(K;) },‘3‘]?:1
is a Riesz basis of subspaces.

Let y3,pk; (xj, A) 1= vo;(;, Ll,(kj) — (00, 01,k L2(0, Xj) )01 1, (x5, L1,k ). Let us notice that
functions y3 p, . (x, Ak) and vk, (xj, Ll,(k].)) are orthogonal in the space L, (0, X;). Let

Yap ki (% Ak) = @p 3,k (Xjs Ak), (38)

where ¢, . satisfy condition Hy4,p,kj(xj,)\k) ;L2(0, X;)|| = 1. Therefore functions Ya,p i (X M)
and vllk].(x]-, Ll,(k]-)> form an orthonormal basis in the space Hp,(k]-)~ Since (17) takes place we
obtain following: system of functions {vy,(x;, Ll,(kj))yzi,p,kj(sz Ak)},‘:‘;zl is a Riesz basis in the
space L, (0, X;).

Therefore such positive numbers Cg, Cy exist that for any function ¢ € L5(0, X;) inequality

o]

Csll; L2 (0, X)) < ) (9,015 L2(0, X)) + (@, Yap i L2(0, X;))? < Collg; Lo (0, X)) |12
k=1

takes place. If we consider equation (38) and inequality 1 < ¢, < oo for any function ¢ €
L»(0, Xj), we obtain the following estimation

Ciollg; L2(0, X)) [* < ) (@, 01 L2(0, X)))? + (9, Y3 . L2(0, X;))? < Cuallg; La(0, X))
k=1
(39)
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Let us prove that the system of functions V(Lll(k],)) is Bessel in the space L, (0, X;), so there
exists a positive number Cy; such that following inequality

o]

Y (@, 00k L2(0, X;))% + (9, 0155 L2(0, X;))? < Cuall; L2(0, X;) |1? (40)
k=1

takes place. From the Cauchy inequality and the definition of y3,, we have the following
estimation

(9,904 L2(0, X)) < 2((9, y3,p 5 L2(0, X)) + (9, 015 L2(0, X}))?) (001, 1,155 L2(0, X))

The system of functions V(Ll,(kj)) is orthonormal in the space (0, X;). Then inequality
|(vo,kj,01,k].;L2(O, X]-))|2 < Cy3 < oo takes place. If we consider the last inequality and (38)
we will get (40) if C1p = 3C9 + 2C13.

Let R(Lyx(j)) := Ej + S(Li(j)) : L2(0,X;) — L2(0, X;) be an operator that acts V(Aq;) —
V(L x(j))- If we consider operator S(Ly(j)) : L2,0(0, Xj) = L21(0,X;) for Ly1(0, X;) — 0, we
will obtain S(Lllk(]-))z = 0. Therefore R_l(Ll,k(j)) = Ej — S(Lq(j)) exists.

Operator R(Ly x(j)) := Ej + S(Ly1k(j)) : L2(0, Xj) — L2(0, X;) is bounded since the system is
Bessel. Therefore the operator R_l(Lllk(]-)) 1 L»(0, Xj) — L2(0, X;) is also bounded. Therefore
the system of functions V(Lll(k],)) is a Riesz basis in the space L, (0, X;). O

7 TRANSFORMATION OPERATORS FOR DIFFERENTIAL EQUATIONS OF EVEN ORDER
. © . .
Let us consider a sequence {Qkf}k C R and consider an operator A, ; such that its

eigenvalues coincide with eigenvalues of operator A ; and root functions are defined by equa-
tions

2

oLk (%), Az pj) = ﬁCOSPk,jxp (41)
2 .

U(),kj (x]‘, AZ,P,j) = ﬁ SINn P i Xj + ijyl,P,kj (x]-, Ak) ’ k] =1,2,.... (42)

Let R(A3,,;) = E+ S(Ay,,;) be an operator in the space L,(0, X;) defined by V(Ag;) —
V(Ay,,j)- From the definition of the operator R(A, ;) we obtain S*(Ay , ;) = 0. Therefore, the
operator R™1(A,,,;) = E — 5(Ay, ;) exists.

Lemma 7. For any ag € R, 1Bl < n,je€{1,2,...,m}, k(j) € N"! and for any sequence
{Bkj},i‘;zl C R a system of functions V(Ay ;) is total and minimal in the space L,(0, X;). The

system of functions V(Ay,, ;) is a Riesz basis in the space L, (0, X;) if and only if the sequence
{Bkj},‘z;’:l is bounded.

Proof. First part can be proved analogously to Lemma 4. O

We will denote by Qp(LO,(kj)) a set of all operators Aj , ; defined by (41), (42). Also we de-
note by rp(LO,(kj)) a set of all operators R(A; ), which are generated by operators A, ,; €
q)(LO,(kj))- From formula (35) we obtain R(L;(j)) := Ej + S(L1x(j)) € FP(LO,(kj))- Let us

consider two sequences {9,1},},‘;7:1, {9%},‘3‘;’21 and define two transformation operators R; =



THE NONLOCAL BOUNDARY PROBLEM FOR THE ELLIPTIC EQUATION 225

Ei+54 € rp(Lo,(kj))/ g = 1,2. Let us consider equality S% =0, g = 1,2, we can define
Ip(Loy k]-)> an operation of multiplication on the space

R1R2 = E]' + 51 + 52. (43)

From R, ! = E;j — S, it follows that the set I',(Ap;) is a group. Since the equality RiRy =
E; + 51+ S2 = RaR; takes place we obtain that the set FP(LO,(k]-ﬂ is a commutative group.

Lemma 8. For any fixed ag € R, 1Bl <mn, j=1,2,...,mk(j) € N1 the system of functions
V(Ay,y,j) is a Riesz basis in the space L, (0, X;) if and only if the sequence {6}, },‘2‘;:1 is bounded.

This lemma can be proved analogously to Lemma 7.

Let us choose an arbitrary n sequences of real numbers {Hp,k],},‘:;’:l, p=12...,m and
consider an operator Az ;. This operator eigenvalues coincides with eigenvalues of Ag; and
roots of the function are defined by equations

2

U1 ; (xj, A3,]-) = —\/TX] COS Pg,jXj, (44)
2 i !

v(),kj (X]', A3,]') = ﬁ smpk,]-x]- + p;l Hp,kjyllp,kj (X]', )Lk), k] = 1, 2, e (45)

Let R(A3j) = E + S(Aj3;) be the operator defined in the space L»(0, Xj) by V(Ag;) —
V(As,). From the definition of R(Aj3 ;) we obtain 5?(Aj ;) = 0. Therefore operator R~ (A3 ;) =
E — S(Aj3,) exists.

Lemma 9. Forany ag € R, |B| < n and sequences {Qp,kj};?;:l CR, p=1,2,...,masystem of
functions V(A3 ;) is total and minimal in the space L,(0, X;). The system of functions V(A3 ;)
is a Riesz basis in the space L, (0, X;) if and only if any sequence {Qp,kj},‘:;’:l, p=12,...,mis
bounded.

We can prove this lemma analogously to Lemma 7.
Let us define root functions of the operator L, , ; by equalities

m
ok (%, L,p,j) = vk;(xj, L1 k() IT ©wx(x), ke N™
r=1,r#j

By the system V(L ;, ;) of root functions of the operator Ly , ; we define operator R(Ly ;) :=
E + S(Ly,p,j), which acts in the space L, (G) . This operator transfer system of functions V(L)
to the system V(L1 ;). So we obtain R(Ly p,jvk(x, (Lo)) := vk(x, L1,;), k € N™. The operator
R(Ly,p,;) is defined by equality

R(Lypj) =E1®@ - ®Ej_1 ®R(Lyx(jy) ®Ejs1--.Em (46)

where E; is the identical transformation in the space L, (0, Xs),s =1,2,...,m

Let us denote by I',; (Lo) a set of the operators which is defined by formula E; ® - - ®
Ei 1 ®R(Azpj) ®Ejy1--- ® Epy, where R(Ay ;) € T(k(j)). A set of the operators R(Lg) =
Ri ® Ry - - ® Ry, we will denote by I'y(Lg).
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Remark 4. We define multiplication on the setT',(Lg) according to formula (43) such that this
set will be abelian group.

Theorem 4. Let assumption Py takes place. Then for any fixed ag € R, |B| < n an operator
Ly,p,; has eigenvalues (5) and system of root functions V(Ly ,, ;), which is total and minimal in
the space L(G).

If assumptions P, Pj take place then the system of functions V(L1 ;) is a Riesz basis in
the space Ly(G).

Proof. According to Lemma 6 for any k(j) € IN"~! there exists a system of functions
W(Ly k() = {wk].(xj, Lix()), kj =1,2,...}, which is biorthogonal to the system V(Ly ;).

Therefore we can define elements of the system W(Ly,;), which is biorthogonal in the
space L»(G) to the system by V(L1 ;)

m
Wi (%, Lapj) = wi (x5, L) [T wor (x0), k€ N™.
r=1,r#j

So the system V(L) is total and minimal in the space L, (G). If assumptions P, P; take
place then root functions (44) of the operator L; , ; are normalized for any k(j) € N"~!and a
system V(Ly,, ;) is a Riesz basis of the space L>(G). O

8 PERTURBATED BOUNDARY PROBLEM WITH ACCENTED VARIABLE

Let us consider for any fixed j = 1,2,...,m, p =1,2,...,n equation (16) and problem with
boundary conditions

bspy i=DF 2yl _g+ D2 y!xr:Xr =0, r#j,s=12...,nr=12,...,m, (47)

Conysy :=DF Myl o+ DF Myl _x =0, j#rs=12,..,nr=12,...,m (48
2p-1 2p— iy

by =Dyl o+ Dyl x + 2 Y by D y‘ —0. (49)
r=04=0

Let Ly, ; be the operator of the problem (16), (47) - (49), Ly v := L(D)y,y € D (Lyy),
D (Lp) := {y € W22” (G) : gZ,s,jy =0,s=12,...,2n,j=1,2,.. .,m} .Let V(L,) be the system
of root functions of L,.

Consider for any fixed k(j) € IN"~! solutions of the spectral problem for operator L in a
form of product (22). To define unknown function z(x;) we obtain the following problem

m
Y. (=DPiag T] yf“ (26)) (xj)) =2Az(xj), AeC, (50)
|Bl<n s=1s#]
ﬁzlsl]-z = Z(ZS_Z) |xj:O +Z(25_2) |xj:X]-: 0,s=12,...,n (51)
Uy s z = z(-1) + z(&-1) =0,s#ps=12,...,n, (52)
xj=0 xj=X;
2p-1) 2p-1) (Y ()

/ 7 1= z(2P— P- b q =0. 53
2,n+p,]z z £=0 +z X=X, + rgqu%) q,1,p.j Z Xj=rX; ( )
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Let Ly ;) be an operator of the problem (50) - (53). Therefore,

Lzlk(]')z = Z 'B]aﬁ H 2/3] ), z€D <L2,k(])) ,

|Bl<n s=1,5#j
D <L2,k(j)> = {y eWd" (0,X)) i froz =0, 5= 1,2,...,2n}.

Lemma 10. Let assumption Py holds true. Then for any ag € R, by, € R, [B| < n,q =
0,1,...,myj k(j) € N"! operator L, k(j) has eigenvalues (5) and a system of root functions

%4 <L2,k(]-)> , which is total and minimal in the space L, (0, X;).

If assumtion P, holds true then the system of functions V (L, j)) is a Riesz basis in the
space L>(0, X;).

Proof. The isospectrality of operators Lg k) and Lj;(j) can be proved by the same way as in
Theorem 9.
If assumtion Py holds true, then eigenfunctions of the operator L, ;(;) are following

__2 -1 —
vl,kj (x]-, L2,k(j)> = \/TYJ COSpk].X]- x]-, k] =12,.... (54)

Root functions v, (x;, Lz,(k].)) of the operator L, ) are defined by

2. _
Uo,k]-(xj, Lz,(k]-)) = \/ijsmpijj 1x]- + 12, kY1,pk; (x]-,)\k) ,ki=1,2,.... (55)

To define 7, ; x we can substitute expression (55) into boundary conditions (51)-(53). If we
consider formulas (32), (33) we obtain

Mopik = (Cp,kj)71€§,J-Tzkj—1,j(xj)f ki=1,2,.... (56)

Therefore, operator L,y (;) has a system of eigenfunction (54) — (56). If we consider formulas
(31), (32) we obtain that the operator L, k) is a partial case of the operator A, ;. Therefore,

from Lemma 7 it follows that the system V(L2 k(j)) is total and minimal in the space L, (0, X;).

Let assumption P; holds. Since equations (33), (49) take place, we get }172 v, k} pkp 2 _1

C1a < 00. So from Theorem 9 it follows that the system V <L2,k(j)> is a Riesz basis in the space
L2(0, X;). O

Let us define root functions of the operator L, , ; by equalities

m
Uk (x, LZ,PJ) < ir L2k ) 111# T kr , ke IN™. (57)
r=1,r#j

Using the system V (L, ;) of root functions (57) of the operator L, , ; we can define an operator
R(Lyp,) := E+ S(Lp,), which acts from system of functions V(Lo) to the system V(L ;).

The operator R(L,,,;) can be defined by equation (46). If assumption P; holds true, then for
any k(j) € N~ ! there exists a system of functions W(Lox(jy) = {wr;(xj, Logjy), ki =1,2,...},
which is biorthogonal to the system W (L, x(;))-
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Therefore, we can define elements of the biorthogonal system W (LZ,p,j) in the space L, (G)
to the system V(L ;) by equality

Wi (x, LZ,p,j) = wk], < jr LZk ) H Trk xr k S IN™.
r=1,r#j

So the system of functions V(L, ;) is total and minimal in the space L(G).

If assumptions Py-P; take place then system of functions V(L) is Bessel in the space
L, (G), since the transformation operator R(L;, ;) is continuous with action L(G) — La(G).
A converse operator is also bounded. Therefore the system of functions V(L ;) is a Riesz
basis of the space L,(G). So we prove following theorem.

Theorem 5. Let assumptions P1—P, take place. Then for any fixed ag € R, byp,; € R, |B| <
n operator Ly, ; has eigenvalues (5) a system of root functions V (L, ), which is total and
minimal in the space L,(G).

2. If assumptions P1-P3 take place, then system of functions V(L,,, ;) is Riesz basis in the
space L, (G).

Consider boundary problem

L(D)y:=)_ aﬁDzﬁy = Ay, (58)
|Bl<n
. 1252 252 _ _ _
lasy =D "yly o+ Dy “yly—x, =0,s=12,...,n,r=12,...,m, (59)
Canissl i= Dzs—1 Yo+ DF Myl _x =0,s=12,...nr#jr=12..,m (60)
2p—-1
Caopip,y i= D} o+ Dyl x By =0, p=1,2,...,n, (61)
Mp,j
by = Z Z bg,rpj Dj
r=04=0 X;

Let L3 ; be the operator of the problem (58) - (61), V (Lg/j) be a system of root functions of
the operator L ;. Let L3y := L(D)y, y € D(L3), D(Ls;) := {y € W3"(G) : b5y =0,
s=1,2,...,2n,j = 1,2,...,m}. Let us consider for fixed k (j) € IN"~! solutions of spectral
problem for operator L3 in a form of product (22).

To define an unknown function z(x;) we have the following problem

m 28,
Z ag H <ks7'ch_1> g z(2)) (x]-) = Az (x]-) , A€C, (62)
|BI<n  s=1,5%#j
4y — ~(25—1) (2s—1) _ _
63,&]]/. z 10 z =X 0,s=1,2,...,n, (63)
Uiz =237 D] 421 +022=0,p=12,...,n (64)

xj=0 xj=X;

Let L3 ;) be the operator of the problem (62) — (64) and

Lakz:== ) ap TT (oxe)® 208 (), z € D(Ls (7)),
|B|<n  s= 15#]

D (L)) = {y € W' (0,X)) 1 £y = ;s = 1,2,...,2n} .
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Lemma 11. Let assumption P, holds true. Then for any fixed ag € R, byo,; € R, |B| < n,
k(j) € N™1 operator L3 ;) has eigenvalues (5) and the system of root functions V(L3,k(]-)),
which is total and minimal in the space L5(0, X;).

2. If assumption P, holds true then system of functions V(L3 (;)) is a Riesz basis in the
space L, (0, X;).

Proof. The Isospectrality of operators Lo, (k) and L (j) can be proved in the same way as in
Lemma 4.
If assumption P holds true we obtain following eigenfunctions of Lz y(;)

cospk,jijfl, ki=12,.... (65)

U1k <xj/ L3lk(7)) - \/%

—

Root functions v (xj, L k() ) of the operator L3 ;) we defined by

2 n
vO,kj <xj/ L3,(k]-)) = ﬁ sinpk,]-X]-’lx]- + ;;1 N2,p,j kY1,p.k; (x]‘, Ak) , k]' =12,..., (66)
where numbers 1, ;  defined by equation (56). Therefore, operator Ls ;) has a system of
root functions (65), (66). If we consider formulas (31), (32), it is easy to see that operator
Ly x(;) is a partial case of operator A, ;. Therefore from Lemma 7 it follows that the system
V(Lg(j) is total and minimal in the space L (0, X;) and the biorthogonal system W(Lg;)) :=
{wkj (X]', L3,(kj)) € Lz(o, X]), k] =1,2,... } exists.

n
Let assumption P, takes place. From (49) we can get ). ‘cllp,j,k‘z < (Ci5 < oo. Then the
p=1

system V(L3 ;) is normalized and from Lemma 9 it follows that the system V(Lz;(;)) is a
Riesz basis in the space L»(0, X;). O

Let us define root functions of the operator L3 ; by equations

m

vk (x, Lg,,j) = U, <x]-, Lg,k(j)) I;I#‘Tr,kr (x), ke N™. (67)
r=1,r#j

n
Using the system V(L3 ;) of root functions (67) we can define an operator R(L3 ;) := [T R(L2p,)
p=1

n
€ Ti(Lo), S(Ls;) := S(Ly,p,;), which acts from system of functions V (Lg) to the system
p=1
V (L)

Theorem 6. Let assumption Py holds. Then for any fixed ag € R, byo,; € R, |B| < n the
operator L3 ; has eigenvalues (6) and the system of eigenfunctions V(L3 ), which is total and
minimal in the space L(G).

2. If assumptions P1—P3 hold, then the system of functions V(L3 ;) is a Riesz basis in the
space L, (G).

Proof. Let assumption P; holds. Then according to Lemma 11 for any k(j) € IN"~! there
exists a system of functions W(Lzx(j)) = {wk],(x]-, L3 k(). kj =1,2,..., } which is biorthogonal
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to the system W(Lz(j)). Therefore we can define elements of the system W (L), which is
biorthogonal in the space L;(G) to the system V(L3), by the following way

m

wk(x, L3,j) = wk],(x]-, L3,k(j)) H Ty k, (xr) , ke N™.
r=1r#j

So the system of functions V (L3 ;) is total and minimal in the space Ly(G). Last part of the
proof can be made analogously to Theorem 5. O

9 PROOFS OF THE MAIN THEOREMS

Let us consider spectral problem forp =1,2,...,n,j=1,2,...,m

L(D)y:= ) agD*y= Ay, (68)
|Bl<n
2p—2 2p—2 .
Cyiy = D].P y|xj:0+ D].P y|x]‘:Xj:0’ p=12...,nj=12...,m, (69)
2p-1 2p-1 1
£n+p,jy = D]‘p ]/|x]:0 + Djp y|x]:Xj + Z Z bq,r,p,jD?mxj:er =0. (70)
r=04g=0

Proof. Proof of Theorem 1.

Let
m m
R(L):=J]R;j(Ls), R(L):=E+)_Sj(Ls) € (Lo). (71)
j=1 j=1
Root functions of the operator L of problem (68) — (70) we can define in the form
m
Ok (x, L) = Hvk], (JCj, L3,k(j)) , ke Nm,
j=1
. (72)
vk (%, L) = v (x, Lo) + ) _ S(Ls,j)ox (x, Lo) -
j=1

SoV (L) :={vk(x,L) € Ly (G) : vy (x,L) = R(L) vy (x,Lp), k € N™} is a system of root func-
m

tions. Since biorthogonal system of functions wy (x,L) = [] Wy, (x]-, L3,k(j)) Lk € IN™, exists,
j=1

then we have the proof of the theorem. O

If assumptions of Theorem 2 hold true, Theorem 6 takes place too. So R(L3;) € [L2(G)],
j=1,2,...,m. If we consider equation (71), we will obtain R(L), R"*(L) € [L»(G)]. Therefore
V(L) is a Riesz basis of the space [L2(G)] by definition.

Remark 5. There exist positive numbers C1(L), Co(L) such that for any function
f(x)= ) fivk(x,L) € Lo(G), fi = (f,wp; L2 (G)) .k € N™,
Ik|=0

holds the following inequality

(e 9]

Cioll i L2 (G) I Y 1fcl? < Curllfs Lo (G) | (73)
IK[=0
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Let us consider boundary problem

L(D)y:= Y azD%y=f, (74)
|Bl<n
logy i= DF 2y oo +DF 2y | ox,=0,j = 1,2,. (75)
1
ES—O-n,j]/ = D]2571]/ ’x +D25 1y ‘x =X; + Z Z bquJD y ’X —x], 0, (76)
r=04g=0
= Z Z frxvrk(x, L), frx = (u,wpi(x,L; Lo(G)), r € Qu, k € N™. (77)
|k|=07€Qm

We will search a solution of the problem in the form of series

(9]

u(x> = Z Z ur,kvr,k(xr L)- (78)
lk|=07€Qm
We will use the following notations: f, s = H}”:l frj+s]-,k]-r Crk 1= H}”:l er,kj/ (;"r].,kj =

Dy, ; Lipj<nt /3piﬁ . If we substitute series (77), (78) into formula (74), we can get

m
11—

Uy = Z Z )\k |s‘fr+s,k€r+s,k1 ke IN", r € Qu,

j=1 rj+sj§1 (79)

[ee]

ulx)=3Y Y i Y. )\;:1_‘5|fr+s,k§r+s,kvk(x/L)-

K|=07€Qu j=1rj+s;<1

If we apply Cauchy inequality to (78) we will obtain the inequality |u, x|? < Cig Y 4eQm ]uq,k\z.
Therefore, using inequality (73) we can get

14;L2(G) 1> < Cag (L) [If; L2, (G) |, Cr9 = CisCirCyy- (80)

Let us suppose that coefficient of derivative D" equals 1 and give a proof for variable x,,. Let
us show that D2"u (x) € Ly (G). For any fixed k(m) € IN"~! we consider boundary problem

> (=1)Frag H Moy PP (xm) = f (xm), (81)
|Bl<n
Coomy =y 2 | _o4+y® 2|, _x,=0,5s=1,2,...,n, (82)
Ontvsml = y(zs_l) » + y(zs_l) = 0,s#ps=12...,n, (83)

- = X
Ompmy =y |y 46,20, (84)
Mp,m
my_zzbqrp]]/q ey (85)
r= 0 q m—Am,r

Let us consider functions y(xy, ), f (%) in a form of series which is constructed using system
of root functions of operator Ly x(y),p := Lo x(m):

y= Z Zysk Vs k(X Loje(m),p), f = Z Zfskm Vs ko (X, Lo (), p)-

km=1s=0 km=1s=
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If we substitute this expressions into equation (81) we can obtain ygx,,, = A, 1 fok,r Yik, =
—Ap 2Co,kmf Lkmp T M ! f1,k,,p- Therefore,

(9]

v =Y A fokmp@0kn (X Lajimyp) + (=A% 2C0 ki Lbmp T A Ykmp) 0L (X0 Lo je(mys P))-
km=1
Let us consider sequence of numbers 7,k 1= 0y kA, U kmw = 1,2,.... The sequence Y, k =

m
oAt =1-A1 ¥ ag I1 (oms)*Ps = 1, kyy — o0 is convergent.
|Bl<npm<n = s=1
Therefore 0 < Cy1 < ¥y < Cyp < 00.

Consider the system of functions

Vm,k,p = {vr,km,p(x) € Lz(O, Xm) : Ur,km,p(x) = ')’m,kvr,km(x/ LZ,k(m),p)f km=1,2,... }

If assumption of Lemma 10 holds, from the last inequality it follows that the system V,, ; , isa
Riesz basis in the space L(0, X,).

Let Vl,m,k,p = {vl,r,km,p(x) € La(0, Xm) : vl,r,km,p(x) = )‘k_ngnnvr,kn,(xr LZ,k(m),p)/ r =
0,1, ky =1,2,... }.

Since operator D2 commutate with the involution I, then analogously to Lemma 4 we
can prove that the system V; , , is total and minimal in the space L2 (0, X ).

Let vp, k., 0(X) = 011k p(X) = D0k, p(X), =101k =1,2,.... From formulas (28) - (30)

<

m

, -1

it follows v30k,,p(¥) = ﬁl,km,ppmkpZO,q( Xj, ki, Ak) + 22 Os ko p20q (Xj Kjs Ak), where [0, p
s=

Cpy < 0. Therefore, Z Z (vzrkm,p( x); L2(0, Xi))* < oo.
km=1r=0

So the system V), , is a Riesz basis in the space L, (0, Xy) and the system Vi, mk,p 18 total
and minimal in the space L, (0, X, ). Therefore, from Bari’s theorem [6] we obtain: the system
Vi,mk,p is a Riesz basis in L (0, X;s) and therefore, the operator R(Vy ) : V(Lox, — Vimx is
bounded. The product of this operators is also continuous in the space L, (0, Xy ).

So for any fixed k(m) € N"~! inequality

2 Z (D2"u,v, i (x,L); Lo(G))? < Ca3 Z 2 f,ok(x,L); La(G))?
km—l r= km—l r=

takes place. If we summarize by k(m) € IN"~1, we will get
D3 |u; Ly (G)|* < Cos|f; Lo (G) >

The assumption made in the inequality proof is insignificant since if assumption P3 holds co-
efficients of the hiest degree derivatives is nonequal to zero and has the same sign.

Analogously we can prove that Df”u(x) € L,(G), j =1,2,...,m —1 for any other vari-
ables. So using the definition of norm in the space L,(G), we obtain the proof of the Theo-
rem 3.
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Y poboTi B 0bMexxeHOMY m-BUMipHOMY THapaaeAerineai Meroaom Dyp’e AocAiAXYeTbCS 3apa-
Ya 3 HEAOKAABHVIMM KPalOBMMM yMOBaMM, sIKi € 36ypeHHSIMM YMOB aHTMIIEPiOAMYHOCTI. BuBueno
BAACTMBOCTI orepaTopa meperBopeHHS R : Ly(G) — Ly(G), sSIkmii BCTAaHOBAIOE 3B'SI30K MiX ca-
MOCHPSDKEHMM OIlepaTopoM L 3apadi 3 yMOBaMM aHTMIIEPiOAMYHOCTI Ta omepaTopoMm L 36ypenoi
HeAOKaAbHOI 3apaui RLy = LR.

Taxox mo6yA0BaHO KOMyTaTUBHY IPYILy omepaTopis meperBopenssi I'(Lj). BcraHOBA€HO, 110
KOXHOMY omepaToposi IepeTrsopeHHst R € I'(Ly) : Lo(G) — Ly(G) BiamoBiaae aesika abcTpakTHa
HeAOKaAbHa 3aaava i Hasmaku. [To6yaoBano cuctemy V(L) xopeHeBux dpyHKIIiit omeparopa L, sika
MICTUTD HeCKIHUEHHe UMCAO IpUEAHAHMX pyHKIIiit. BusHaueno ymoBy, ipu sikux cucreMa V(L) mos-
Ha Ta MiHiMaAbHa B ripoctopi Ly (G), Ta yMOBY, IIpy sikmx BOHa € 6a3oto Pica y mpoctopi Ly (G).

Y Bumaaxy, sikiio crcrema V(L) e 6asoro Pica B mpoctopi Ly (G), BCTAaHOBAEHO AOCTaTHI YMOBH,
IIpY SIKMX HEAOKAABHA 3aAaUa Ma€ EAVIHVIL pO3B’sI30K Y BUTAsIAL psiay Dyp’e 3a cucremoro V(L).

Kntouosi cnosa i ¢ppasu: avdpepeHIiaAbHO-OIIepaTOpHe PiBHSHHS, BAacHI dyHKII, 6asa Pica.



