References
-
Abdian A.Z., Mirafzal S.M. On new classes of multicone graph determined by their spectrums. Alg. Struc. Appl. 2015, 2 (1), 23-34.
-
Abdian A.Z. Graphs which are determined by their spectrum. Konuralp J. Math. 2016, 4 (2), 34-41.
-
Abdian A.Z. Two classes of multicone graphs determined by their spectra. J. Math. Ext. 2016, 10 (4), 111-121.
-
Abdian A.Z. Graphs cospectral with multicone graphs $K_w\bigtriangledown L(P)$. TWMS. J. App. Eng. Math. 2017, 7 (1), 181-187.
-
Abdian A.Z. The spectral determination of the multicone graphs $K_w\bigtriangledown P$. arXiv:1706.02661
-
Abdian A.Z., Mirafzal S.M. The spectral characterizations of the connected multicone graphs $K_w\bigtriangledown LHS$ and $K_w\bigtriangledown LGQ$(3,9). Discrete Math. Algorithms Appl. 2018, 10 (2), 1850019.
doi: 10.1142/S1793830918500192
-
Abdian A.Z., Mirafzal S.M. The spectral determinations of the connected multicone graphs $K_w\bigtriangledown mP_{17}$ and $K_w\bigtriangledown mS$. Czechoslovak Math. J. 2018.
doi: 10.21136/CMJ.2018.0098-17
-
Abdian A.Z. The spectral determinations of the multicone graphs $K_w\bigtriangledown mC_n$. arXiv preprint. arXiv:1703.08728.
-
Abdian A.Z., Beineke Lowell. W., Behmaram A. On the spectral determinations of the connected multicone graphs $ K_r\bigtriangledown sK_t$. arXiv preprint. arXiv:1806.02625.
-
Abdian A.Z., Behmaram A., Fath-Tabar G.H. Graphs determined by signless Laplacian spectra. arXiv:1806.10004.
-
Mirafzal S.M., Abdian A.Z. The spectral determinations of some classes of multicone graphs. J. Discrete Math. Sci. Crypt. 2018, 21 (1), 179-189.
-
Borovićanin B., Petrović M. On the index of cactuses with $n$ vertices. Publ. Inst. Math. (Beograd) (N.S.) 2006, 79 (93), 13-18.
-
Brouwer A.E., Haemers W.H. Spectra of graphs. In: Axler S., Casacuberta C. (Eds.) Universitext, 1. Springer-Verlag, New York, 2012.
-
Bu C., Zhou J., Li H., Wang W. Spectral characterizations of the corona of a cycle and two isolated vertices. Graphs Combin. 2014, 30 (5), 1123-1133.
-
Bu C., Zhou J. Signless Laplacian spectral characterization of the cones over some regular graphs. Linear Algebra Appl. 2012, 436 (9), 3634-3641.
doi: 10.1016/j.laa.2011.12.035
-
Cvetković D., Rowlinson P., Simić S., An introduction to the theory of graph spectra. In: Leary I. (Eds.) London Mathematical Society Student Texts, 75. Cambridge University Press, Cambridge, 2010.
-
Cvetković D., Rowlinson P., Simić S. Signless Laplacians of finite graphs. Linear Algebra Appl. 2007, 423 (1), 155-171.
doi: 10.1016/j.laa.2007.01.009
-
Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, I. Publ. Inst. Math. (Beograd) (N.S.) 2009, 85 (99), 19-33.
doi: 10.2298/PIM0999019C
-
Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, II. Linear Algebra Appl. 2010, 432 (9), 2257-2272.
doi: 10.1016/j.laa.2009.05.020
-
Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, III.Appl. Anal. Discrete Math. 2010, 4 (1), 156-166.
doi: 10.2298/AADM1000001C
-
Cvetković D., Doob M., Sachs H.
Spectra of graphs: theory and applications. J. A. Barth, Heidelberg, 1995.
-
Das K.C., Liu M. Complete split graph determined by its (signless) Laplacian spectrum. Discrete Appl. Math. 2016, 205, 45-51.
doi: 10.1016/j.dam.2016.01.003
-
Das K.C., Liu M. Kite graphs determined by their spectra. Appl. Math. Comput. 2017, 297, 74-78.
doi: 10.1016/j.amc.2016.10.032
-
Günthard Hs.H., Primas H. Zusammenhang von graphtheorie und mo-theotie von molekeln mit systemen konjugierter bindungen. Helv. Chim. Acta 1956, 39 (6), 1645-1653.
doi: 10.1002/hlca.19560390623
-
Huang S., Zhou J., Bu C. Signless Laplacian spectral characterization of graphs with isolated vertices. Filomat 2016, 30 (14), 3689-3696.
doi: 10.2298/FIL1614689H
-
Liu M. Some graphs determined by their (signless) Laplacian spectra. Czechoslovak Math. J. 2012, 62 (4), 1117-1134.
doi: 10.1007/s10587-012-0067-9
-
Liu M., Shan H., Das K.C. Some graphs determined by their (signless) Laplacian spectra. Linear Algebra Appl. 2014, 449, 154-165.
doi: 10.1016/j.laa.2014.02.027
-
Liu X., Lu P. Signless Laplacian spectral characterization of some joins. Electron. J. Linear Algebra 2015, 30, 443-454.
doi: 10.13001/1081-3810.1942
-
Liu M., Liu B., Wei F. Graphs determined by their (signless) Laplacian spectra. Electron. J. Linear Algebra 2011, 22, 112-124.
doi: 10.13001/1081-3810.1428
-
Xu L.Z., He C.X. On the signless Laplacian spectral determination of the join of regular graphs. Discrete Math. Algorithm. Appl. 2014, 6 (4), 1450050.
doi: 10.1142/S1793830914500505
-
Merris R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 1994, 197-198, 143-176.
doi: 10.1016/0024-3795(94)90486-3
-
Mirzakhah M., Kiani D. The sun graph is determined by its signless Laplacian spectrum. Electron. J. Linear Algebra 2010, 20, 610-620.
doi: 10.13001/1081-3810.1397
-
Mirafzal S.M., Abdian A.Z. Spectral characterization of new classes of multicone graphs. Stud. Univ. Babeş-Bolyai Math. 2017, 62 (3), 275-286.
doi: 10.24193/subbmath.2017.3.01
-
Omidi G.R., Vatandoost E. Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra. Electron. J. Linear Algebra 2010, 20, 274-290.
doi: 10.13001/1081-3810.1373
-
Radosavljević Z., Rašajski M. A class of reflexive cactuses with four cycles. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2003, 14, 63-84.
-
van Dam E.R., Haemers W.H. Which graphs are determined by their spectrum? Linear Algebra. Appl. 2003, 373, 241-272.
doi: 10.1016/S0024-3795(03)00483-X
-
van Dam E.R., Haemers W.H. Developments on spectral characterizations of graphs. Discrete Math. 2009, 309 (3), 576-586.
doi: 10.1016/j.disc.2008.08.019
-
Wang J.F., Belardo F., Huang Q.X., Borovićanin B., On the two largest $Q$-eigenvalues of graphs. Discrete Math. 2010, 310 (21), 2858-2866.
doi: 10.1016/j.disc.2010.06.030
-
Wang G., Guo G., Min L. On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees. Czechoslovak Math. J. 2014, 64 (2), 311-325.
-
Wang J.F., Belardo F., Huang Q.X., Marzi E.M.L. Spectral characterizations of dumbbell graphs. Electron. J. Combin. 2010, 17, $\#$R42.
-
Zhang Y., Liu X., Zhang B., Yong X. The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 2009, 309 (10), 3364-3369.
doi: 10.1016/j.disc.2008.09.052