References

  1. Albeverio S., Kuzhel S. One-dimensional Schrödinger operators with P-symmetric zero-range potentials. J. Phys. A 2005, 38 (22), 4975. doi: 10.1088/0305-4470/38/22/019
  2. Albeverio S., Kuzhel S. On elements of the Lax-Phillips scattering scheme for PT-symmetric operators. J. Phys. A 2012, 45 (44), 444001. doi: 10.1088/1751-8113/45/44/444001
  3. Ashyralyev A., Sarsenbi A.M. Well-posedness of an elliptic equations with an involution. Electr. J. Diff. Eq. 2015, 284, 1-8.
  4. Baranetskij Ya.O., Yarka U.B., Fedushko S.A. Abstract perturbations of the Dirichlet differential operator. Spectral properties. Scientific Bull. Uzhg. Univ. Ser. Mat. Inf. 2012, 3 (1), 12-16. (in Ukrainian)
  5. Baranetskij Ya., Basha A. Nonlocal multipoint problem for differential-operator equations of order $2n.$ J. Math. Sci. 2016, 217 (2), 176-186. doi: 10.1007/s10958-016-2965-0
  6. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Boundary-value problem for abstract differential equations with operator involution. Bukov. Math. J. 2016, 4 (3-4), 22-29.
  7. Baranetskij Ya., Kolyasa L. Boundary-value problem for abstract second-order differential equation with involution. Visn. Lviv Polytech. National Univ. Ser. Phys. Math. Sci. 2017, 871, 20-27.
  8. Bassotti L. Linear operators that are T-invariant with respect to a group of homeomorphisms. Russian Math. Surv. 1988, 43 (1), 67-101. (in Russian)
  9. Burlutskaya M.Sh., Khromov A.P. Initial-boundary value problems for first-order hyperbolic equations with involution. Dokl. Math. 2011, 84 (3), 783-786. doi: 10.1134/S1064562411070088 (translation of Dokl. Akad. Nauk 2011, 441 (2), 156-159. (in Russian))
  10. Cabada A., Tojo F.A.F. Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions. J. Math. Anal. Appl. 2014, 412 (1), 529-546. doi: 10.1016/j.jmaa.2013.10.067
  11. Gokhberg I.Ts., Krein M.G. Introduction to the Theory of Linear Not Self-Adjoint Operators. Nauka, Moscow, 1965. (in Russian)
  12. Gupta C.P. Two-point boundary value problems involving reflection of the argument. Int. J. Math. Math. Sci. 1987, 10 (2), 361-371. doi: 10.1155/S0161171287000425
  13. Kalenyuk P., Baranetskij Ya., Kolyasa L. Nonlocal boundary value problems for the operator of differentiation of even order. In: Nonclassical problems of the theory of differential equations. Lviv, 2017. 91-110. (in Ukrainian)
  14. Kirane M., Al-Salti N. Inverse problems for a nonlocal wave equation with an involution perturbation. J. Nonlinear Sci. Appl. 2016, 9, 1243-1251.
  15. Kritskov L.V., Sarsenbi A.M. Spectral properties of a nonlocal problem for a second-order differential equation with an involution. Differ. Equ. 2015, 51 (8), 984-990. doi: 10.1134/S0012266115080029
  16. Kurdyumov V.P. On Riescz bases of eigenfunction of 2-nd order differential operator with involution and integral boundary conditions. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform. 2015, 15 (4), 392-405. doi: 10.18500/1816-9791-2015-15-4-392-405 (in Russian)
  17. Moiseev E.I., Ambartsumyan V.E. On the Basis Property of the Eigenfunctions of the Frankl Problem with Nonlocal Evenness and Oddness Conditions of the Second Kind. Dokl. Math. 2010, 81 (3), 429-433. doi: 10.1134/S1064562410030257 (translation of Dokl. Akad. Nauk 2010, 432 (4), 451-455. (in Russian))
  18. Naimark M.A. Linear differential operators. Frederick Ungar Publ. Co., New York, 1967.
  19. O'Regan D. Existence results for differential equations with reflection of the argument. J. Aust. Math. Soc. 1994, 57 (2), 237-260. doi: 10.1017/S1446788700037538
  20. Sadybekov M.A., Sarsenbi A.M. Mixed problem for a differential equation with involution under boundary conditions of general form. AIP Conf. Proc. 2012, 1470 (1), 225-227. doi: 10.1063/1.4747681
  21. Sadybekov M.A., Turmetov B.K. On analogues of periodic boundary value problems for the Laplace operator in a ball. Eurasian Math J. 2012, 3 (1), 143-146.