References
-
Arnold V.I. Mathematical methods of classical mechanics. Nauka, Moscow, 1989. (in Russian)
-
Blaszak M. Bi-Hamiltonian formulation for the Korteweg-de Vries hierarchy
with sources. J. Math. Phys. 1995, 36 (9), 4826-4831.
doi: 10.1063/1.530923
-
Blaszak M., Marciniak K. $R$-matrix approach to lattice integrable systems. J. Math. Phys. 1994, 35 (9), 4661-4682.
doi: 10.1063/1.530807
-
Blaszak M., Szum A., Prykarpatsky A. Central extension approach to integrable field and lattice-field fields in (2+1)-dimensions. Rep. Math. Phys. 1999, 44 (1-2), 37-44.
doi: 10.1016/S0034-4877(99)80143-8
-
Bogoyavlensky O.I., Novikov S.P. The relationship between Hamiltonian formalisms of stationary and nonstationary problems. Funct. Anal. Appl. 1976, 10 (1), 8-11.
doi: 10.1007/BF01075765. (translation of Funktsional. Anal. i Prilozhen. 1976, 10 (1), 9-13. (in Russian))
-
Faddeev L.D., Takhtadjan L.A. Hamiltonian methods in the theory of solitons. In: Classics in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 2007.
-
Gitman D.M., Tyutin I.V. The canonical quatization of fields with constraints. Nauka, Moscow, 1986. (in Russian)
-
Hentosh O.E. Hamiltonian finite-dimensional oscillator-type reductions of Lax integrable superconfomal hierarchies. Nonlinear Oscil. (N.Y.) 2006, 9 (1), 13-27.
doi: 10.1007/s11072-006-0021-6. (translation of Neliniini Koliv. 2006, 9 (1), 15-30. (in Ukrainian))
-
Hentosh O.E. Lax integrable Laberge-Mathieu hierarchy of supersymmetric nonlinear dynamical systems and its finite-dimensional reduction of Neumann type. Ukrainian Math. J. 2009, 61 (7), 1075-1092.
doi: 10.1007/s11253-009-0260-7. (translation of Ukrain. Mat. Zh. 2009, 61 (7), 906-921. (in Ukrainian))
-
Hentosh O.Ye. The Lax integrable differential-difference dynamical systems on extended phase spaces. SIGMA. Symmetry Integr. Geom. Methods Appl. 2010, 6, 034, 14 pp.
doi: 10.3842/SIGMA.2010.034. arXiv:1004.2945
-
Hentosh O., Prytula M., Prykarpatsky A. Differential-geometric and Lie-algebraic foundations for studying integrable nonlinear dynamical systems on functional manifolds. Lviv National University Publishing, Lviv, 2006. (in Ukrainian)
-
Lax P.D. Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 1975, 28 (1), 141-188.
doi: 10.1002/cpa.3160280105
-
Ma W.-X., Geng X. Bäcklund transformations of soliton systems from symmetry constraints. In: Coley A., Levi D., Milson R., Rogers C., Winternitz P. (Eds.) Proc. of AARMS-CRM Workshop ``Bäcklund and Darboux Transformations: The Geometry of Solitons'', Halifax (N.S.), Canada, June 4-9, 1999. CRM Proc. Lecture Notes, 29. Amer. Math. Soc., Providence, RI, 2001, 313-324. arXiv:nlin/0107071v1 [nlin.SI]
-
Ma W.-X., Zhou Z. Binary symmetry constraints of $\mathcal N$-wave interaction equations in $1+1$ and $2+1$ dimensions. J. Math. Phys. 2001, 42 (9), 4345-4382.
doi: 10.1063/1.1388898
-
Magri F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19 (5), 1156-1162.
doi: 10.1063/1.523777
-
Ogawa Y. On the $(2+1)$-dimensional extension of 1-dimensional Toda lattice hierarchy. J. Nonlinear Math. Phys. 2008, 15 (1), 48-65.
doi: 10.2991/jnmp.2008.15.1.5
-
Perelomov A.M. Integrable systems of classical mechanics and Lie algebras. Nauka, Moscow, 1990. (in Russian)
-
Prykarpatskii A.K. Elements of the integrability theory of discrete dynamical systems. Ukrainian Math. J. 1987, 39 (1), 73-77.
doi: 10.1007/BF01056428. (translation of Ukrain. Mat. Zh. 1987, 39 (1), 87-92. (in Ukrainian))
-
Prykarpatsky A.K., Blackmore D., Strampp W., Sydorenko Yu., Samuliak R. Some remarks on Lagrangian and Hamiltonian formalism, related to infinite-dimensional dynamical systems with symmetries. Condensed Matter Phys. 1995, 6, 79-104.
doi: 10.5488/CMP.6.79
-
Prykarpatsky Ya.K., Bogoliubov N.N., Prykarpatsky A.K., Samoilenko V.H. On the complete integrability of nonlinear dynamical systems on functional manifolds within the gradient-holonomic approach. Rep. Math. Phys. 2011, 68 (3), 289-318.
doi: 10.1016/S0034-4877(12)60011-1
-
Prykarpatsky A., Hentosh O., Blackmore D.L. The finite-dimensional Moser type reductions of modified Boussinesq and super-Korteweg-de Vries Hamiltonian systems via the gradient-holonomic algorithm and the dual moment maps. I. J. Nonlinear Math. Phys. 1998, 4 (3-4), 445-469.
doi: 10.2991/jnmp.1997.4.3-4.21
-
Prykarpatsky A., Hentosh O., Kopych M., Samuliak R. Neumann-Bogoliubov-Rosochatius oscillatory dynamical systems and their integrability via dual moment maps. I. J. Nonlinear Math. Phys. 1995, 2 (2), 98-113.
doi: 10.2991/jnmp.1995.2.2.1
-
Prykarpatsky A.K., Mykytiuk I.V. Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. In: Hazewinkel M. (Ed.) Mathematics and Its Applications, 443. Kluwer Acad. Publ., Dordrecht, Boston, London, 1998.
doi: 10.1007/978-94-011-4994-5
-
Samoilenko A.M., Prykarpatsky Y.A. Algebraic-analitical aspects of fully integrable dynqamical systems and its perturbations. Natsional. Akad. Nauk Ukrain., Inst. Mat., Kiev, 2002. (in Ukrainian)
-
Suris Yu. Miura transformations of Toda-type integrable systems with applications to the problem of integrable discretizations. arXiv:solv-int/9902003v1.
-
Tamizhmani K.M., Kanaga Vel S. Differential-difference Kadomtsev-Petviashvili equations: properties and integrability. J. Indian Ints. Sci. 1998, 78 (5), 311-372.
-
Yao Yu., Liu X., Zeng Yu. A new extended discrete KP hierarchy and a dressing method. J. Phys. A 2009, 42 (45), 454026, 10 pp.
doi: 10.1088/1751-8113/42/45/454026