References
-
Angulo J.M., Ruiz-Medina M.D., Anh V.V., Grecksch W. Fractional diffusion and fractional heat equation. Adv.
in Appl. Probab. 2000, 32 (4), 1077-1099. doi: 10.1239/aap/1013540349
-
Beghin L., Kozachenko Yu., Orsingher E., Sakhno L. On the solution of linear odd-order heat-type equations with
random initial conditions. J. Stat. Phys. 2007, 127 (4), 721-739. doi: 10.1007/s10955-007-9309-x
-
Barrasa de La Krus E., Kozachenko Yu.V. Boundary-value problems for equations of mathematical physics with
strictly Orlicz random initial conditions. Random Oper. and Stoch. Equ. 1995, 3 (3), 201-220.
-
Bejsenbaev E., Kozachenko Yu.V. Uniform convergence in probability of random series, and solutions of boundary
value problems with random initial conditions. Teor. Imovir. Mat. Stat. 1979, 21, 9-23. (in Russian)
-
Buldygin V.V., Kozachenko Yu.V. Metric Characterization of Random Variables and Random processes.
AMS, Providence, Rhode Island, 2000.
-
Markovich B.M. Equations of Mathematical Physics. Lviv Polytechnic Publishing House, Lviv, 2010. (in
Ukrainian)
-
Kozachenko Yu.V., Leonenko G.M. Extremal behavior of the heat random field. Extremes 2005, 8 (3), 191-205.
doi: 10.1007/s10687-006-7967-8
-
Kozachenko Yu.V., Slyvka G.I. Justification of the Fourier method for hyperbolic equations with random initial
conditions. Theory Probab. and Math. Statist. 2004, 69, 67-83.
doi: 10.1090/S0094-9000-05-00615-0 (translation
of Teor. Imovir. Mat. Stat. 2003, 69, 63-78. (in Russian))
-
Kozachenko Yu.V., Slyvka G.I. Modelling a solution of a hyperbolic equation with random initial conditions. Theory
Probab. Math. Statist. 2007, 74, 59-75. doi: 10.1090/S0094-9000-07-00698-9
(translation of Teor. Imovir. Mat. Stat. 2006, 74, 52-67 (in Russian))
-
Kozachenko Yu.V., Slyvka-Tylyshchak A.I. The Cauchy problem for the heat equation with a random right side.
Random Oper. Stoch. Equ. 2014, 22 (1), 53-64. doi: 10.1515/rose-2014-0006
-
Kozachenko Yu.V., Veresh K.J. The heat equation with random initial conditions from Orlicz spaces. Theory Probab.
Math. Statist. 2010, 80, 71-84. doi: 10.1090/S0094-9000-2010-00795-2
(translation of Teor. Imovir. Mat. Stat. 2009, 80, 63-75 (in Ukrainian))
-
Kozachenko Yu.V., Veresh K.J. Boundary-value problem for a nonhomogeneous parabolic equation with Orlicz right
side. Random Oper. Stoch. Equ. 2010, 18 (2), 97-119. doi: 10.1515/rose.2010.005
-
Slyvka-Tylyshchak A.I. Simulation of vibrations of a rectangular membrane with random initial conditions. Annales
Mathematicae et Informaticae 2012, 39, 325-338.
-
Slyvka-Tylyshchak A.I. Justification of the Fourier method for equations of homogeneous string vibration with random
initial conditions. Annales Univ. Sci. Budapest., Sect. Comp. 2012, 38, 211-232.
-
Slyvka G.I., Veresh K.J. Justifications of the Fourier method for hyperbolic equations with random initials conditions
from Orlicz spaces. Bull. Uzhgorod Univ. Ser. Math. Inform. 2008, 16, 174-183. (in Ukrainian)