References
-
Anh V.V., Leonenko N.N. Spectral analysis of fractional kinetic equations with random datas. J. Stat. Phys. 2001, 104 (5/6), 1349-1387.
-
Caputo M. Linear model of dissipation whose Q is almost friequency independent, II. Geofis. J. R. Astr. Soc. 1967, 13, 529-539.
-
Cheng J., Nakagawa J., Yamamoto M., Yamazaki T. Uniqueness in an inverse problem for a one-dimentional fractional diffusion equation. Inverse problems 2009, 25, 1-16.
-
Djrbashian M.M. Integral transformations and representations of functions in complex domain. Nauka, Moscow, 1999. (in Russian)
-
Duan Jun-Sheng. Time- and space-fractional partial differential equations. J. Math. Phys. 2005, 46 (1), 13504-13511.
-
Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. Birkhäuser Verlag, Basel-Boston-Berlin, 2004.
-
El-Borai M. M. On the solvability of an inverse fractional abstract Cauchy problem. Intern. J. Research Rev. Appl. Sci. 2010, 4, 411-415.
-
Hatano Y., Nakagawa J., Wang Sh., Yamamoto M. Determination of order in fractional diffusion equation. J. Math. Ind. 2013, 5A, 51-57.
-
Ivanchov M. Inverse problems for equations of parabolic type. In: Math. Studies, Monograph Ser., 10, VNTL Publ., Lviv, 2003.
-
Kochubei A.N. Fractional-order diffusion. Differential Equations 1990, 26, 485-492.
-
Kochubei A.N., Eidelman S.D. Equations of one-dimentional fractional-order diffusion. Reports NAS of Ukraine 2002, 12, 11-16. (in Ukrainian)
-
Lopushanska H.P., Lopushanskyj A.O. Space-time fractional Cauchy problem in spaces of generalized functions. Ukr. Math. J. 2013 64 (8), 1215-1230. doi:10.1007/s11253-013-0711-z (translation of Ukr. Mat. Zhurn. 2012, 64 (8), 1067-1080. (in Ukrainian))
-
Lopushansky A.O. Regularity of the solutions of the boundary value problems for diffusion-wave equation with generalized functions in right-hand sides. Carpathian Math. Publ. 2013, 5 (2), 279-289. doi:10.15330/cmp.5.2.279-289 (in Ukrainian)
-
Luchko Yu. Boundary value problem for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 409-422.
-
Meerschaert M.M., Nane Erkan, Vallaisamy P. Fractional Cauchy problems on bounded domains. Ann. Probab. 2009, 37, 979-1007.
-
Nakagawa J., Sakamoto K., Yamamoto M. Overview to mathematical analysis for fractional diffusion equation — new mathematical aspects motivated by industrial collaboration. J. Math. Ind. 2010, 2A, 99-108.
-
Rundell W., Xu X., Zuo L. The determination of an unknown boundary condition in fractional diffusion equation. Appl. Anal. 2012, 1, 1-16.
-
Shilov G.E. Mathimatical Analysis. Second special course. Nauka, Moscow, 1965. (in Russian)
-
Vladimirov V.S. Equations of Mathematical Physics. Marcel Dekker, New York, 1971. (translation of Nauka, Moscow, 1967. (in Russian))
-
Voroshylov A.A., Kilbas A.A. Conditions of the existence of classical solution of the Cauchy problem for diffusion-wave equation with Caputo partial derivative. Dokl. Ak. Nauk 2007, 414 (4), 1-4. (in Russian)
-
Zhang Y., Xu X. Inverse source problem for a fractional diffusion equation. Inverse problems 2011, 27, 1-12.